• Title/Summary/Keyword: 선박용 디젤 엔진

Search Result 158, Processing Time 0.022 seconds

Friction Welding Process Analysis of Piston Rod in Marine Diesel Engine and Mechanical Properties of Welded Joint (선박 디젤 엔진용 피스톤 로드의 마찰용접 공정해석 용접부 기계적 특성)

  • Jeong, H.S.;Son, C.W.;Oh, J.S.;Choi, S.K.;Cho, J.R.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.236-242
    • /
    • 2011
  • The two objectives of this study were, first, to determine the optimal friction welding process parameters using finite element simulations and, second, to evaluate the mechanical properties of the friction welded zone for large piston rods in marine diesel engines. Since the diameters of the rod and its connecting part are very different, the manufacturing costs using friction welding are reduced compared to those using the forging process of a single piece. Modeling is a generally accepted method to significantly reduce the number of experimental trials needed when determining the optimal parameters. Therefore, because friction welding depends on many process parameters such as axial force, initial rotational speed and energy, amount of upset and working time, finite element simulations were performed. Then, friction welding experiments were carried out with the optimal process parameter conditions resulting from the simulations. The base material used in this investigation was AISI 4140 with a rod outer diameter of 280 mm and an inner diameter of 160 mm. In this study, various investigation methods, including microstructure characterization, hardness measurements and tensile and fatigue testing, were conducted in order to evaluate the mechanical properties of the friction welded zone.

Evaluation of Blank Heating Processes by Thermal Stress Analysis (열응력 해석에 의한 블랭크 단조품 가열공정 평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.7
    • /
    • pp.4375-4380
    • /
    • 2015
  • This study was performed to evaluate a newly proposed heating process of blank, which was used for Crank throw in the diesel engine, and provide design guidelines of heating processes. Non-linear numerical analyses were done using ANSYS program to investigate temperature and thermal stress distributions of blank during heating processes. The heating process consists of two stages; one is a heating stage with 20 hours, and the other is a holding stage with 12 hours, totaling 32-hour heating time. Based on analysis results, it was found that the temperature difference between the center and the surface of blank increased linearly during the heating stage but decreased gradually during the holding stage of heating processes, while max. equivalent stress, $12.5kg/mm^2$, was found at the center of blank after 10-hour heating time. As the guideline of blank heating process, it was recommended to keep the temperature difference between the center and the surface of blank to be within $150^{\circ}C$ when the environment temperature in furnace reaches $650^{\circ}C$ during a heating stage.

Root cause analysis of sticking in hydraulically actuated multi-disc friction clutch for ship propulsion (선박 추진용 유압작동식 다판 마찰클러치 고착현상 고장탐구)

  • Jeong, Sang-Hu;Kim, Jeong-Ryeol;Shin, Jae-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.330-336
    • /
    • 2017
  • This study performs a root cause analysis of the sticking that occurs in the hydraulically actuated wet type multi-disc friction clutch in a ship's diesel engine propulsion system that uses rubber elastic coupling. The fishbone method was used to study the sticking through dismantling investigation of the reduction gear and clutch, investigation of the components, and onboard system tests including nondestructive testing. The friction plate sticking is caused by the slip due to friction heat resulting from the leakage of control oil through cracks in the assembled hollow shaft. The friction plate cooling oil also leaks simultaneously through the crack, and partial sticking occurs due to the hot spots in the friction plates. These are caused by insufficient amount of cooling oil due to oil leakage.

Assessment of Ergonomic Risk Factors of Manual Material Handling in the Ship Diesel Engine Assembling Processes (모 선박용 디젤엔진 제조업체 들기작업의 인간공학 위험요인 평가)

  • Kim, Boo Wook;Kim, Sun Ja;Shin, Yong Chul;Kim, Hyun Dong;Woo, Ji Hoon;Kang, Dong mug;Lee, Hyun seok
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.153-159
    • /
    • 2005
  • The purpose of this study was to assess the ergonomic risks of lifting tasks in a marine diesel engine manufacturing industry using the National Institute for Occupational Safety and Health(NIOSH) Revised Lifting Equation(NLE). Average Lifting Index(LI=Weight of Load/Recommended Weight Limit) of a total number of 45 lifting tasks was $1.6{\pm}0.7$. The LIs were above 1 at 34 tasks(75.6%), and above 2 at 11 tasks(24.4%). Parts management showed the highest average LI value (LI=2.3) in all departments, which resulted from high frequency and heave load of lifting. The common and significant ergonomic risk factors in the processes were the heavy weight of diesel engine parts and the long horizontal distance. In addition, some lifting tasks had such potential risk factors as the long vertical distance, the high frequency of lifts or the long work duration.

A Basis Study on the Optimal Design of the Integrated PM/NOx Reduction Device (일체형 PM/NOx 동시저감장치의 최적 설계에 대한 기초 연구)

  • Choe, Su-Jeong;Pham, Van Chien;Lee, Won-Ju;Kim, Jun-Soo;Kim, Jeong-Kuk;Park, Hoyong;Lim, In Gweon;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.6
    • /
    • pp.1092-1099
    • /
    • 2022
  • Research on exhaust aftertreatment devices to reduce air pollutants and greenhouse gas emissions is being actively conducted. However, in the case of the particulate matters/nitrogen oxides (PM/NOx) simultaneous reduction device for ships, the problem of back pressure on the diesel engine and replacement of the filter carrier is occurring. In this study, for the optimal design of the integrated device that can simultaneously reduce PM/NOx, an appropriate standard was presented by studying the flow inside the device and change in back pressure through the inlet/outlet pressure. Ansys Fluent was used to apply porous media conditions to a diesel particulate filter (DPF) and selective catalytic reduction (SCR) by setting porosity to 30%, 40%, 50%, 60%, and 70%. In addition, the ef ect on back pressure was analyzed by applying the inlet velocity according to the engine load to 7.4 m/s, 10.3 m/s, 13.1 m/s, and 26.2 m/s as boundary conditions. As a result of a computational fluid dynamics analysis, the rate of change for back pressure by changing the inlet velocity was greater than when inlet temperature was changed, and the maximum rate of change was 27.4 mbar. This was evaluated as a suitable device for ships of 1800kW because the back pressure in all boundary conditions did not exceed the classification standard of 68mbar.

Computational Analysis on the Control of Droplet Entrained in the Exhaust from the Spray Type Scrubber system (스프레이형 스크러버의 배출가스에 포함된 액적의 제어방법에 관한 전산해석적 연구)

  • Lee, Chanhyun;Chang, Hyuksang;Koo, Seongmo
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.191-199
    • /
    • 2015
  • The SOx emission from the ship diesel engines will do a negative influence to the human health and the environment. To reduce the negative environmental effect of the SOx emission caused by the high traffic of ship movements, the SECA (SOx emission control area) has been set on several province around world to carry out the severe emissions control and to meet the emissions control standard. To cut down the SOx emission from the ships, the wet type scrubber is being used widely. In this work, we prepared a numerical model to simulate the spray type scrubber to study the motion of liquid droplets in the flow of the scrubber. For the analysis, the CFD (computational fluid dynamics) method was adopted. As a special topic of the study, we designed the wave plate type of mist eliminator to check the carry over of the uncontrolled water droplet to the exhaust. Numerical analysis is divided into two stages. At the first stage, the analysis was done on the basic scrubber without the mist eliminator, and then the second stage of analysis was done on the scrubber with the mist eliminator on several condition to check and compare with the basic scrubber. On the condition of the basic scrubber, 42.0% of the distributed water droplets were carried over to the exhaust. But by adding the designed droplet eliminator at the exhaust of the scrubber, only 3.4% of the distributed water droplets supplied to the scrubber was emitted to the atmosphere.

Effects of Fuel Injection Timing on Performance in Old Marine Diesel Engine (Using M/S "Hae Rim" of Training Ship) (선박용 노후 디젤기관의 성능에 미치는 연료 분사시기의 영향(실습선 "해림호"를 중심으로))

  • Lim, Jae-Keun;Cho, Sang-Gon;Lee, Ho-Heon;Im, Hyung-Sup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.525-530
    • /
    • 2013
  • In this study, the generator engine of training ship M/S "HAE RIM" of Kunsan National University which is being operated for 20 years was used in the experiment. The experiment was carried out under the engine speed of 1200rpm, then the load was varied 30 kW intervals from 0 to 90 kW and the injection timing was varied $2^{\circ}$CA intervals from BTDC $19^{\circ}$ to $23^{\circ}$CA. In the case of advancing fuel injection timing from BTDC $21^{\circ}$CA to $23^{\circ}$CA, specific fuel consumption is decreased by 1.37%, NOx is increased by 11.59 %, soot is decreased by 23.5 % and $SO_2$ is decreased by 2.8 %. Accoring to the analysis of effects of fuel injection timing on combustion & exhaust emissions characteristics on an old marine diesel engine, it is proved that the optimum fuel injection timing is BTDC $23^{\circ}$ which is $2^{\circ}$ faster than that of original injection timing.

Preliminary Study on Factor Technology of Selective Catalytic Reduction System in Marine Diesel Engine (선박용 디젤엔진 SCR 시스템 요소 기술에 관한 기초 연구)

  • Park, Yoon-Yong;Song, Ha-Cheol;Ahn, Gi-Ju;Shim, Chun-Sik
    • Journal of Navigation and Port Research
    • /
    • v.40 no.4
    • /
    • pp.173-181
    • /
    • 2016
  • From 2016, controls on reduction of NOx and SOx emissions from the vessels that are operated in the emission control area were tightened. The selectivity catalytic reduction system of the denitrification equipment which NOx among the above controlled materials is very effective and used commercially very much. But it has the disadvantage that CSR is activated at high temperatures. Therefore, the SCR and SCR activation instrument that can react even at low temperatures by using micro-nano bubbles so that the above problems can be minimized were developed. And the computational fluid dynamics technique was used by ANSYS-CFX package to prepare the plan that improves the SCR system's efficiency. Simulation for the viscous flow analysis of the SCR system was executed by applying the Navier-Stokes equation to it as a governing equation. For the SCR system's shape, 3D modeling was done by using CATIA V5. SCR jet nozzle's position was checked by changing it to the intervals of 1/3, 1/2, and 2/3 from the inlet of the vent pipe to compare the SCR system's efficiency. And the number of nozzles was compared and analyzed by simulating 4, 6, and 8 holes to check an effect of the number on the SCR system's efficiency. The simulation result has found that the closer nozzles are to the inlet of the vent pipe and the more nozzles are, the more efficiency is improved.