• Title/Summary/Keyword: 선박발전용 디젤엔진

Search Result 18, Processing Time 0.022 seconds

Dynamic Behaviour of Resilient Mounting System for the Marine Diesel Engine (선박용 디젤엔진 탄성지지계의 동적거동)

  • 김성춘;이돈출;김의간
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.80-85
    • /
    • 1993
  • 본 논문에서는 디젤 엔진의 탄성지지계에 작용하는 엔진 기진력에 대하여 검토하고, 탄성지지계의 진동 양상과 탄성지지를 통하여 선체로 전달되는 힘 을 계산하는 과정을 정식화하였다. 또한 이 결과를 고무형 탄성지지를 갖는 선박 추진용 디젤엔진과 발전기용 디젤엔진에 적용하여 탄성지지계의 자유 진동과 강제진동 해석을 수행하고 발전기용 디젤엔진의 탄성지지계에 대해 서는 계측을 행하여 계산 결과와의 비교 검토를 행하고자 한다.

  • PDF

Energy efficiency improvements in part load for a marine auxiliary diesel engine (선박발전기용 디젤엔진의 부분부하에서 에너지 효율 개선에 관한연구)

  • Jung, Kyun-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.877-882
    • /
    • 2014
  • The reduction of CO2 emission has been discussed in the Marine Environment Protection committee in the International Maritime Organization as the biggest causes of GHG for the purpose of indexing CO2 amounts released into the atmosphere from ships. Accordingly, various methods including the change in the hull design to improve energy efficiency, the coating development to reduce friction resistances, the additives development for improving thermal efficiency in an engine, the low-speed operation to reduce fuel consumptions, and etc. have been applied. The main engine of a ship is an electronic engine for improving the efficiency of the whole load area. However, marine generator engines still use mechanical drive engines in intake, exhaust, and fuel injection valve drive cams. In addition, most of marine generator engines in ships apply a part-load operation of less then 80% due to an overload protection system. Therefore, marine auxiliary diesel engine set at 100% load is necessary to readjust in order to efficient operation because of part-load operation. The objective of this study is to report the results of the part-load fuel consumption improvement by injection timing readjust to identifying the operational characteristics of a marine generator engine currently operated in a ship.

Design of a Control System for the Emergency Diesel Generator (비상용 디젤발전기 제어시스템 설계)

  • Kim, Jin-ae;Joo, Jae-hun;Baek, Pan-Geun;Kim, Byeong-Jun;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.849-853
    • /
    • 2009
  • A generator is in use for a moving vehicle like car, aircraft, ship as well as key industry including a thermal power plant, a water power plant, a nuclear power plant, and so on. Such the AC generator plays an important role in vehicle, ship, aircraft, and so forth, at the point of generating electric power. Especially in the matter of the ship, the emergency generator system is mounted to provide against malfunction of main generator on a voyage. So, it is ordered that the system can monitor the main generator and operate the emergency generator when the emergency happens. This study is about controller for the emergency diesel engine generator and design of a various software.

  • PDF

LNG-Vessels Hybrid Engine Seawater Desalination Complex System (LNG 선박 하이브리드 엔진 및 해수 담수화 복합 시스템)

  • Lim, Jae Jun;Lee, Dong-Heon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.663-664
    • /
    • 2016
  • Temperature difference power generation using sea water is a method repeatedly closed liquefaction and gasification by using the ammonia (refrigerant) of the deep sea water and surface water with a temperature difference between turning the turbine. The larger the temperature difference between the nature of the temperature characteristic energy generation development, the better. This is the story that the surface waters of the deep-water temperature difference is large. But the winter is not large temperature difference between surface water and deep water has lowered energy efficiency. And desalination technologies accounted for 97% of the earth, but we can not eat the technology to convert sea water into fresh water, fresh water produced by the desalination technology that is available for various industries such as irrigation, drinking water in the vessel.In this paper, LNG transport vessels, based on the LNG transport ship to the temperature difference power generation using cold energy of thermal energy and LNG marine diesel engines, which use the existing order to improve the temperature of the surface waters of the season that is the current problem we propose that a complex development of desalination and desalination of seawater freezing research into hybrid research and utilizing the cold energy of the engine.

  • PDF

Theoretical Study on Fuel Savings of Marine Diesel Engine by Exhaust-Gas Heat-Recovery System of Combined Cycle (복합 사이클의 배기가스 열회수 시스템에 의한 선박용 디젤엔진의 연료 절약에 관한 이론적 연구)

  • Choi, Byung Chul;Kim, Young Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.171-179
    • /
    • 2013
  • The thermodynamic characteristics of a combined cycle applied with a topping cycle such as a trilateral cycle at relatively high temperatures and a bottoming cycle such as an organic Rankine cycle at relatively low temperatures have been theoretically investigated. This is an electric generation system used to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when the boundary temperature between the topping and the bottoming cycles increased, the system efficiencies of energy and exergy were simultaneously maximized because the total exergy destruction rate (${\sum}\dot{E}_d$) and exergy loss ($\dot{E}_{out2}$) decreased, respectively. In the case of a marine diesel engine, the waste heat recovery electric generation system can be utilized for additional propulsion power, and the propulsion efficiency was found to be improved by an average of 9.17 % according to the engine load variation, as compared to the case with only the base engine. In this case, the specific fuel consumption and specific $CO_2$ emission of the diesel engine were reduced by an average of 8.4% and 8.37%, respectively.

Experimental study of NOx reduction in marine diesel engines by using wet-type exhaust gas cleaning system (선박용 디젤엔진의 NOx를 저감하기 위한 습식 배기가스 처리기술 적용에 관한 실험적 연구)

  • Ryu, Younghyun;Kim, Taewoo;Kim, Jungsik;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.216-221
    • /
    • 2017
  • Diesel engines have the highest brake thermal efficiency among internal combustion engines. Therefore, they are utilized in medium and large transportation vehicles requiring large amounts of power such as heavy trucks, ships, power generation systems, etc. However, diesel engines have a disadvantage of generating large quantities of nitrogen oxides during the combustion process. Therefore, the authors tried to reduce the amount of nitrogen oxides in marine diesel engines using a wet-type exhaust gas cleaning system utilizing the undivided electrolyzed seawater method. In this method, electrolyzed seawater in injected into the harmful gas discharge from the diesel engine using real seawater. The authors investigated the reduction of NO and NOx from the pH value, available chlorine concentration, and the temperature of electrolyzed seawater. The results of this experiment indicated that when the electrolyzed seawater is acidic, the NO oxidation rate in the oxidation tower is higher than that when the electrolyzed seawater has a neutral pH. Likewise, the NO oxidation rate increased with the increase in concentration of chlorine. Further, it was confirmed that the electrolyzed seawater temperature had no effect on the NO oxidation rate. Thus, the NOx exhaust emission value produced by the diesel engine was reduced by means of electrolyzed seawater treatment.

A Study on the Characteristic of NOx Emissions by IMO Operating Modes in a Four Stroke Marine Power Generation Diesel Engine (선박 발전용 4행정 디젤엔진의 IMO 운전모드에 따른 NOx 배출특성에 관한 연구)

  • 김현규;김규보;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.457-465
    • /
    • 2004
  • Environmental protection on the ocean has been interested and nowadays the International Maritime Organization(IMO) has advanced on the prevention of air pollution from ships. This study presents the performance and the emission characteristics of 4 stroke marine diesel engines for generation application in D2 cycle(IMO mode). The effects of important operating parameters, such as intake air pressure. intake air temperature and maximum combustion pressure on NOx emissions were also described. Emissions measurement and calculation are processed according to IMO Technical Code. The results show that the maximum combustion pressure by fuel injection timing control and intake air temperature has strong influence on NOx emission production. But NOx emission is not affected by intake air pressure and exhaust gas back pressure.

Improvement of the performance and emission in a four-stroke diesel engine using fuel additive (4행정 디젤엔진에 연료첨가제 사용에 따른 성능 및 배기배출물 개선에 관한 연구)

  • Ryu, Younghyun;Lee, Youngseo;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.762-767
    • /
    • 2016
  • High thermal efficiency and the ability to use various types of fuel are a few of the many advantages of diesel engines. However, a major disadvantage is that their exhaust emissions are more harmful to humans and the environment than that of conventional engine. Consequently, the provisions of the international emissions standards for diesel engine equipped passenger cars, commercial vehicles, and ships have become more stringent. These standards include the EU Euro 6, the IMO MEPC Tier 3, and the US EPA Tier 4. Ryu et al. published a study that applied fuel additives to two-stroke diesel engines. In this study, a four-stroke diesel engine using diesel oil for a generator is utilized as the test subject, and an experiment is performed to verify whether fuel additive can be used to improve performance and exhaust emissions. In addition, this experimental study presents research results for the application of fuel additives in both two-stroke and four-stroke diesel engines. The experimental results were compared and analyzed by placing an oil-soluble calcium-based organometallic compound in diesel oil. The results confirmed that the addition of fuel additive improved the performance (fuel consumption rate, exhaust gas temperature) and exhaust emissions (NOx, CO) of the diesel engine.