• Title/Summary/Keyword: 선량제약치

Search Result 4, Processing Time 0.023 seconds

A Preliminary Establishment of Dose Constraints for the Member of Public Taking into Account Multi-unit Nuclear Power Plants in Korea (국내 복수호기 원전 운영을 고려한 일반인 선량제약치 설정에 대한 고찰)

  • Kong, Tae-Young;Choi, Jong-Rack;Son, Jung-Kwon;Kim, Hee-Geun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.129-137
    • /
    • 2012
  • In the 2007 recommendation, the ICRP evolves from the previous process-based system of practices and intervention to the system based on the characteristics of radiation exposure situation. In addition, ICRP recommends the application of source-related dose constraints under the planned exposure situation as a tool for the optimization of protection to workers and the member of public. In this study, the analysis of radioactive effluents from Korean nuclear power plants and the public dose assessment were conducted in reference with the use of dose constraints. Finally, the measure to implement the dose constraints for the member of public was suggested taking into account multi-unit reactors operating at a single site in Korea.

A Study on the Implementation of Dose Constraints in Occupational Dose According to ICRP 103 Recommendations in Korea (ICRP신권고에 따른 직무피폭에서의 선량제약치 국내 적용 방안 연구)

  • Kim, Yong-Min;Cho, Kun-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.127-133
    • /
    • 2011
  • In 2007, the International Commission on Radiological Protection (ICRP) published Recommendations of the International Commission on Radiological Protection. Accordingly IAEA safety standards committees have reviewed and revised the BSS. The process of the implementation of the ICRP 103 into Korean radiation protection regulations has been continued. Although the new recommendations retain the fundamental protection principles, the impact of the new ICRP recommendations will necessarily be greater than ever before. ICRP recommends the application of dose constraint in planned situations and reference level in existing & emergency situations for strengthening of the principle of optimization. Dose constraints and reference level play a criterion on the level of individual dose as prospective and source-related values. Therefore it is necessary to apply dose constraints and reference levels to all nuclear and RI&RG facilities in Rep. of Korea. Dose constraints and reference level of occupational exposure will be set-up by the stakeholder itself with the cooperation of regulatory body. In this study, the implementation method was discussed to apply the dose constraints and reference level as the procedure for the optimization, not the tool of the regulation.

Development of a Portable Device Based Wireless Medical Radiation Monitoring System (휴대용 단말 기반 의료용 무선 방사선 모니터링 시스템 개발)

  • Park, Hye Min;Hong, Hyun Seong;Kim, Jeong Ho;Joo, Koan Sik
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.150-158
    • /
    • 2014
  • Radiation-related practitioners and radiation-treated patients at medical institutions are inevitably exposed to radiation for diagnosis and treatment. Although standards for maximum doses are recommended by the International Commission on Radiological Protection (ICPR) and the International Atomic Energy Agency (IAEA), more direct and available measurement and analytical methods are necessary for optimal exposure management for potential exposure subjects such as practitioners and patients. Thus, in this study we developed a system for real-time radiation monitoring at a distance that works with existing portable device. The monitoring system comprises three parts for detection, imaging, and transmission. For miniaturization of the detection part, a scintillation detector was designed based on a silicon photomultiplier (SiPM). The imaging part uses a wireless charge-coupled device (CCD) camera module along with the detection part to transmit a radiation image and measured data through the transmission part using a Bluetooth-enabled portable device. To evaluate the performance of the developed system, diagnostic X-ray generators and sources of $^{137}Cs$, $^{22}Na$, $^{60}Co$, $^{204}Tl$, and $^{90}Sr$ were used. We checked the results for reactivity to gamma, beta, and X-ray radiation and determined that the error range in the response linearity is less than 3% with regard to radiation strength and in the detection accuracy evaluation with regard to measured distance using MCNPX Code. We hope that the results of this study will contribute to cost savings for radiation detection system configuration and to individual exposure management.