• Title/Summary/Keyword: 선량분포 측정

Search Result 398, Processing Time 0.025 seconds

Energy Distribution of X-rays from Medical Linear Accelerator (의료용 선형 가속기에서 발생된 X-선의 에너지 분포에 대한 고찰)

  • 김진기;김정홍;김부길
    • Progress in Medical Physics
    • /
    • v.2 no.1
    • /
    • pp.29-35
    • /
    • 1991
  • For accureate treatment planning, new models of dose calculations are being developed which require the knowledge of the energy spectra and angular distributions of the X-rays incident on the surface of the material. In this present study, we applied the Monte Carlo methods to the systematic analysis of the spectra distribution of X-ray beams produced by medical linear accelerator. As expected, the spectra become softer as the distance is farther from the central axis. also, its influenced by the geometrical dffect of head system.

  • PDF

Three-Dimensional Dosimetry Using Magnetic Resonance Imaging of Polymer Gel (중합체 겔과 자기공명영상을 이용한 3차원 선량분포 측정)

  • Oh Young-Taek;Kang Haejin;Kim Miwha;Chun Mison;Kang Seung-Hee;Suh Chang Ok;Chu Seong Sil;Seong Jinsil;Kim Gwi Eon
    • Radiation Oncology Journal
    • /
    • v.20 no.3
    • /
    • pp.264-273
    • /
    • 2002
  • Purpose : Three-dimensional radiation dosimetry using magnetic resonance imaging of polymer gel was recently introduced. This dosimetry system is based on radiation induced chain polymerization of acrylic monomers in a muscle equivalent gel and provide accurate 3 dimensional dose distribution. We planned this study to evaluate the clinical value of this 3-dimensional dosimetry. Materials and Methods: The polymer gel poured into a cylindrical glass flask and a spherical glass flask. The cylindrical test tubes were for dose response evaluation and the spherical flasks, which is comparable to the human head, were for isodose curves. T2 maps from MR images were calculated using software, IDL. Dose distributions have been displayed for dosimetry. The same spherical flask of gel and the same irradiation technique was used for film and TLD dosimetry and compared with each other. Results : The R2 of the gel respond linearly with radiation doses in the range of 2 to 15 Gy. The repeated dosimetry of spherical gel showed the same isodose curves. These isodose curves were identical to dose distributions from treatment planning system especially high dose range. In addition, the gel dosimetry system showed comparable or superior results with the film and TLD dosimetry. Conclusion : The 3-dimensional dosimetry for conformal radiation therapy using MRI of polymer gal showed stable and accurate results. Although more studies are needed for convenient clinical application, it appears to be a useful tool for conformal radiation therapy.

Effect of Dose Rate Variation on Dose Distribution in IMRT with a Dynamic Multileaf Collimator (동적다엽콜리메이터를 이용한 세기변조방사선 치료 시 선량분포상의 선량률 변화에 따른 효과)

  • Lim, Kyoung-Dal;Jae, Young-Wan;Yoon, Il-Kyu;Lee, Jae-Hee;Yoo, Suk-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: To evaluate dose distribution differences when the dose rates are randomly changed in intensity-modulated radiation therapy using a dynamic multileafcollimator. Materials and Methods: Two IMRT treatment plans including small-field and large-field plans were made using a commercial treatment planning system (Eclipse, Varian, Palo Alto, CA). Each plan had three sub-plans according to various dose rates of 100, 400, and 600 MU/min. A chamber array (2D-Array Seven729, PTW-Freiburg) was positioned between solid water phantom slabs to give measurement depth of 5 cm and backscattering depth of 5 cm. Beam deliveries were performed on the array detector using a 6 MV beam of a linear accelerator (Clinac 21EX, Varian, Palo Alto, CA) equipped with 120-leaf MLC (Millenium 120, Varian). At first, the beam was delivered with same dose rates as planned to obtain reference values. After the standard measurements, dose rates were then changed as follows: 1) for plans with 100 MU/min, dose rate was varied to 200, 300, 400, 500 and 600 MU/min, 2) for plans with 400 MU/min, dose rate was varied to 100, 200, 300, 500 and 600 MU/min, 3) for plans with 600 MU/min, dose rate was varied to 100, 200, 300, 400 and 500 MU/min. Finally, using an analysis software (Verisoft 3.1, PTW-Freiburg), the dose difference and distribution between the reference and dose-rate-varied measurements was evaluated. Results: For the small field plan, the local dose differences were -0.8, -1.1, -1.3, -1.5, and -1.6% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +0.9, +0.3, +0.1, -0.2, and -0.2% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.4, +0.8, +0.5, +0.3, and +0.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). On the other hand, for the large field plan, the pass-rate differences were -1.3, -1.6, -1.8, -2.0, and -2.4% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +2.0, +1.8, +0.5, -1.2, and -1.6% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.5, +1.9, +1.7, +1.9, and +1.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). In short, the dose difference of dose-rate variation was measured to the -2.4~+2.0%. Conclusion: Using the Varian linear accelerator with 120 MLC, the IMRT dose distribution is differed a little <(${\pm}3%$) even though the dose-rate is changed.

  • PDF

Study on the multi-channel dosimetry system with microprocessor and its application to radition therapy (마이크로 프로세서를 이용한 선량측정 장치의 제작과 그 응용에 관한 연구)

  • 강정구;이정옥;김승곤;김부길;김진기
    • Progress in Medical Physics
    • /
    • v.3 no.1
    • /
    • pp.19-24
    • /
    • 1992
  • We have desingned multi channel dosimetry system with Intel single-chip microprocessor. We considered that this system is very useful for patient dose measurement, measurement of sealed source dose distribution and calibration of small field for stereotatic radiosurgery system We have designed that this system use commercially available semicondutor detector and personal computer can control this system and process data through RS-232C serial port.

  • PDF

Effect of an Acrylic Plate and SSD on Dose Profile and Depth Dose Distribution of 9 MeV Electron Beams (에너지 저하체로서 아크릴과 SSD 가 9MeV 전자선의 측방 및 깊이선량분포에 미치는 효과)

  • 강위생
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.65-71
    • /
    • 1998
  • The aims are to evaluate the effects of an 1.0 cm acrylic plate and SSD on the dose profile and depth dose distribution of 9 MeV electron beam and to analyse adequacy for using an acrylic plate to reduce energy of electron beams. An acrylic plate of 1.0 cm thickness was used to reduce energy of 9 MeV electron beam to 7 MeV. The plate was put on an electron applicator at 65.4 cm distance from x-ray target. The size of the applicator was 10${\times}$l0cm at 100 cm SSD. For 100cm, l05cm and 110cm SSD, depth dose on beam axis and dose profiles at d$\_$max/ on two principal axes were measured using a 3D water phantom. From depth dose distributions, d$\_$max/, d$\_$85/, d$\_$50/ and R$\_$p/, surface dose, and mean energy and peak energy at surface were compared. From dose profiles flatness, penumbra width and actual field size were compared. For comparison, 9 MeV electron beams were measured. Surface dose of 7 MeV electron beams was changed from 85.5% to 82.2% increasing SSD from 100 cm to 110 cm, and except for dose buildup region, depth dose distributions were independent of SSD. Flatness of 7 MeV ranged from 4.7% to 10.4% increasing SSD, comparing 1.4% to 3.5% for 9 MeV. Penumbra width of 7 MeV ranged from 1.52 cm to 3.03 cm, comparing 1.14 cm to 1.63 cm for 9 MeV. Actual field size increased from 10.75 cm to 12.85 cm with SSD, comparing 10.32 cm to 11.46 cm for 9 MeV. Virtual SSD's of 7 and 9 MeV were respectively 49.8 cm and 88.5cm. In using energy reducer in electron therapy, depth dose distribution were independent of SSD except for buildup region as well as open field. In case of using energy reducer, increasing SSD made flatness to deteriorate more severely, penumbra width more wide, field size to increase more rapidly and virtual SSD more short comparing with original electron beam. In conclusion, it is desirable to use no energy reducer for electron beam, especially for long SSD.

  • PDF

즉발감마선을 이용한 70MeV 양성자선량 급락지점 위치 측정에 관한 연구

  • Seo, Gyu-Seok;Kim, Jong-Won;Kim, Ju-Yeong;Min, Cheol-Hui;Jo, Seong-Gu;Kim, Chan-Hyeong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.100-102
    • /
    • 2005
  • 양성자 빔을 이용한 치료는 종양부위에 높은 선량을 균일하게 전달하고 정상세포에는 적은 선량을 전달할 수 있어 암치료 효과가 높으나 정확한 치료와 환자의 안전을 위해서는 양성자선량의 급락지점을 정확히 아는 것이 중요하다. 본 연구에서는 양성자와 물질과의 핵반응으로 직각방향으로 방출되는 즉발감마선을 측정하여 양성자선량 급락지점을 측정할 수 있는 검출시스템을 몬테칼로 전산코드로 전산모사하였으며, 70MeV 단일에너지 빔과 최대에너지가 70MeV인 SOBP 빔을 모의피폭체인 물팬텀에 조사하고 검출시스템을 통해 직각방향으로 방출되는 즉발감마선의 분포를 계산하였다. 모의피폭체 안에서의 양성자선량의 분포와 측정된 즉발감마선의 분포를 서로 비교하여 두 분포 사이의 상관관계를 찾고 이 상관관계를 이용하여 양성자선량 급락지점을 결정할 수 있음을 확인할 수 있었다.

  • PDF