• Title/Summary/Keyword: 선량률

Search Result 464, Processing Time 0.028 seconds

Derivation of a Verification Formula for the Dose Rate Contributing to the Maze Door of the 6 MV Treatment Room (6 MV 치료실의 미로 도어에 기여하는 선량률의 검증식 유도)

  • Park, Cheol Seo;Kim, Jong Eon;Kang, Eun Bo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.85-91
    • /
    • 2021
  • The purpose of this study is to derive an equation to verify the accuracy of the dose rate for each component calculated at the measurement point outside the maze door when designing the maze door of 6 MV X-ray beam. Based on the component-specific dose rate calculation formula for the measurement point outside the maze door described in NCRP Report 151 and IAEA Safety Report Series 47, the dose rate calculation formula for each component when applying the values of the drawing-based parameters and the dose rate calculation formula for each component when applying the values of conservative parameters are derived. From the two dose rate calculation formulas for each component, the dose rate verification formula for each component at the measurement point outside the maze door was derived. The resulting dose rate verification formula for each component at the measurement point outside the maze door can be compared and analyzed whether the dose rate for each component at the measurement point outside the maze door calculated by the designer falls within the range of the dose rate obtained from the derived dose rate verification formula for each component. This verification formula is considered to be practically useful in verifying the accuracy of the dose rate for each component calculated by the designer.

Analysis of dosimetric leaf gap variation on dose rate variation for dynamic IMRT (동적 세기조절방사선 치료 시 선량률 변화에 따른 선량학적엽간격 변화 분석)

  • Yang, Myung Sic;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Lee, Sun Young;Cha, Seok Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • To evaluate the position accuracy of the MLC. This study analyzed the variations of the dosimetric leaf gap(DLG) and MLC transmission factor to reflect the location of the MLC leaves according to the dose rate variation for dynamic IMRT. We used the 6 MV and 10 MV X-ray beams from linear accelerator with a Millennium 120 MLC system. We measured the variation of DLG and MLC transmission factor at depth of 10 cm for the water phantom by varying the dose rate to 200, 300, 400, 500 and 600 MU/min using the CC13 and FC-65G chambers. For 6 MV X-ray beam, a result of measuring based on a dose rate 400 MU/min by varying the dose rate to 200, 300, 400, 500 and 600 MU/min of the difference rate was respectively -2.59, -1.89, 0.00, -0.58, -2.89%. For 10 MV X-ray beam, the difference rate was respectively ?2.52, -1.69, 0.00, +1.28, -1.98%. The difference rate of MLC transmission factor was in the range of about ${\pm}1%$ of the measured values at the two types of energy and all of the dose rates. This study evaluated the variation of DLG and MLC transmission factor for the dose rate variation for dynamic IMRT. The difference of the MLC transmission factor according to the dose rate variation is negligible, but, the difference of the DLG was found to be large. Therefore, when randomly changing the dose rate dynamic IMRT, it may significantly affect the dose delivered to the tumor. Unless you change the dose rate during dynamic IMRT, it is thought that is to be the more accurate radiation therapy.

  • PDF

Measurement of the Spatial Dose Rates During PET/CT Studies (전신 PET/CT 검사에서 공간선량률 측정)

  • Park, Myeong-Hwan
    • Journal of radiological science and technology
    • /
    • v.29 no.4
    • /
    • pp.257-260
    • /
    • 2006
  • In order to evaluate the exposure to the radiologic technologists from patients who had been administrated with radiopharmaceuticals, we measured the spatial dose rates at $5{\sim}300\;cm$ from skin surface of patients using an proportional digital surveymeter, 1.5(PET scan) and 4hr(bone scan) after injection. In results, the exposure to the technologists in each procedure was small, compared with the dose limits of the medical workers. However, the dose-response relationships in cancer and hereditary effects, referred to as the stochastic effects, have been assumed linear and no threshold models ; therefore, the exposure should be minimized. For this purpose, the measurements of spatial dose rate distributions were thought to be useful.

  • PDF

Reference Levels for Radiation Dose in Angiography and Interventional Radiology : In the Cerebrum (혈관 조영 검사 및 중재적 방사선 시술시 방사선량에 대한 참고 기준치 : 대뇌 중심으로)

  • Han, Jae-Bok
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.302-308
    • /
    • 2011
  • The aim of this study is to compare reference levels for radiation dose in angiography and interventional radiology. Proposed reference levels for various procedures and classification of diseases are provided by fluoroscopy time and kerma area product(KAP) rate normalizing the body habitus focusing the cerebrum. Subarachnoid hemorrhage(SAH) represents the highest KAP-rates and aneurysm represents the lowest KAP-rates. According to these types of procedures, internal carotid artery(ICA), common carotid artery(CCA), and vertebral artery(VA) show the highest KAP-rates and guglielmi detachable coil shows the lowest KAP-rates. Therefore, the present study can suggested reference levels for patient radiation dose and is expected to be further useful in the field of radiation dose education and management of angiography and interventional radiology.

Direction detection technique of radioactive contaminants based on rotating collimator (회전형 콜리메이터 기반 방사능 오염원의 방향탐지 기법)

  • Hwang, Young-Gwan;Song, Keun-Young;Lee, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1519-1527
    • /
    • 2020
  • AGeneral radiation measuring devices have been developed in the form of spatial dose rate detection devices that measure dose rates to radioactive contaminant and 2D or 3D imaging devices for radioactive contamination information. Each of these radiation detection techniques has advantages. The advantages of both detection devices are necessary to minimize personal injury and rapid decontamination in the area of a radioactive accident. In this paper, we proposed a technique that can measure the dose rate and direction information about the radioactive pollutant source in real time using a detection sensor, a rotating body, and a directional shield for radioactive pollutant detection. The rotational-based detection device is configured to check the dose rate and direction using the location information of the rotator and measurement value. We proposed a measurement technique for vertical and horizontal directions through multiple holes. It was confirmed that the measurement error for direction information was less than 1% when detected in the horizontal direction.

High versus Low Dose-Rate Intracavitary Irradiation for Adenocarcinoma of the Uterine Cervix (자궁경부 선암 환자에서 고선량률 강내치료와 저선량률 강내치료의 비교)

  • Kim Woo Chul;Kim Gwi Eon;Chung Eun Ji;Suh Chang Ok;Hong Soon Won;Cho Young Kap;Loh JK
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.32-39
    • /
    • 2000
  • Purpose :The incidence of adenocarcinoma of the uterine cervix is low. Traditionally, Low Dose Rate (LDR) brachytherapy has been used as a standard modality in the treatment for patients with carcinoma of the uterine cervix. The purpose of this report is to evaluate the effects of the High dose rate (HDR) brachytherapy in the patients with adenocarcinoma of the uterine cervix compared with the LDR. : From January 1971 to December 1992, 106 patients of adenocarcinoma of uterine cervix were treated with radiation therapy in the Department of Radiation Oncology, Yonsei University with curative intent. LDR brachytherapy was carried out on 35 patients and 71 patients were treated with HDR brachytherapy. In LDR Group, 8 patients were in stage I, 18 in stage II and 9 in stage III. External radiation therapy was delivered with 10 MV X-ray, daily 2 Gy fractionation, total dose 40$\~$46Gy (median 48 Gy). And LDR Radium intracavitary irradiation was peformed with Henschke applicator, 22$\~$59 Gy to point A (median 43 Gy). In HDR Group, there were 16 patients in stage 1, 38 in stage II and 17 in stage III. The total dose of external radiation was 40$\~$61 Gy(median 45 Gy), daily 1.8$\~$2.0 Gy. HDR Co-60 intracavitary irradiation was peformed with RALS (Remote Afterloading System), 30 $\~$ 57 Gy(median 39 Gy) to point A, 3 times a week, 3 Gy per fraction. Conclusion : The 5-year overall survival rate in LDR Group was 72.9$\%$, 61.9$\%$, 45.0$\%$ in stage I, II, III, respectively and corresponding figures for HDR were 87.1$\%$, 58.3$\%$, 41.2$\%$, respectively (p>0.05). There was no statistical difference in terms of the 5-year overall survival rate between HDR Group and LDR Group in adenocarcinoma of the uterine cervix. There was 11$\%$ of late complication rates in LDR Group and 27$\%$ in HDR Group. There were no prognostic factors compared HDR with LDR group. The incidence of the late complication rate in HDR Group stage II, III was higher than that in LDR Group(16.7$\%$ vs. 31.6$\%$ in stage II, 11.1$\%$ vs. 35.3$\%$ In stage III, p>0.05). Although the incidence of radiation induced late complication rate was higher in HDR Group stage II and III patients than that in the LDR Group, statistical significance was not detected and within acceptable level. Conclusion : There was no difference in terms of 5-year survival rate and failure pattern in the patients with adenocarcinoma of the uterine cervix treated with HDR and LDR brachytherapy. Even late complication rates were higher in the HDR group It was an acceptable range. This retrospective study suggests that HDR brachytherapy seems to replace the LDR brachytherapy in the adenocarcinoma of the uterine cervix. However, further studies will be required to refine the dose rate effects.

  • PDF

Effect of Dose Rate Variation on Dose Distribution in IMRT with a Dynamic Multileaf Collimator (동적다엽콜리메이터를 이용한 세기변조방사선 치료 시 선량분포상의 선량률 변화에 따른 효과)

  • Lim, Kyoung-Dal;Jae, Young-Wan;Yoon, Il-Kyu;Lee, Jae-Hee;Yoo, Suk-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: To evaluate dose distribution differences when the dose rates are randomly changed in intensity-modulated radiation therapy using a dynamic multileafcollimator. Materials and Methods: Two IMRT treatment plans including small-field and large-field plans were made using a commercial treatment planning system (Eclipse, Varian, Palo Alto, CA). Each plan had three sub-plans according to various dose rates of 100, 400, and 600 MU/min. A chamber array (2D-Array Seven729, PTW-Freiburg) was positioned between solid water phantom slabs to give measurement depth of 5 cm and backscattering depth of 5 cm. Beam deliveries were performed on the array detector using a 6 MV beam of a linear accelerator (Clinac 21EX, Varian, Palo Alto, CA) equipped with 120-leaf MLC (Millenium 120, Varian). At first, the beam was delivered with same dose rates as planned to obtain reference values. After the standard measurements, dose rates were then changed as follows: 1) for plans with 100 MU/min, dose rate was varied to 200, 300, 400, 500 and 600 MU/min, 2) for plans with 400 MU/min, dose rate was varied to 100, 200, 300, 500 and 600 MU/min, 3) for plans with 600 MU/min, dose rate was varied to 100, 200, 300, 400 and 500 MU/min. Finally, using an analysis software (Verisoft 3.1, PTW-Freiburg), the dose difference and distribution between the reference and dose-rate-varied measurements was evaluated. Results: For the small field plan, the local dose differences were -0.8, -1.1, -1.3, -1.5, and -1.6% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +0.9, +0.3, +0.1, -0.2, and -0.2% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.4, +0.8, +0.5, +0.3, and +0.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). On the other hand, for the large field plan, the pass-rate differences were -1.3, -1.6, -1.8, -2.0, and -2.4% for the dose rate of 200, 300, 400, 500, 600 MU/min, respectively (for 100 MU/min reference), +2.0, +1.8, +0.5, -1.2, and -1.6% for the dose rate of 100, 200, 300, 500, 600 MU/min, respectively (for 400 MU/min reference) and +1.5, +1.9, +1.7, +1.9, and +1.2% for the dose rate of 100, 200, 300, 400, 500 MU/min, respectively (for 600 MU/min reference). In short, the dose difference of dose-rate variation was measured to the -2.4~+2.0%. Conclusion: Using the Varian linear accelerator with 120 MLC, the IMRT dose distribution is differed a little <(${\pm}3%$) even though the dose-rate is changed.

  • PDF

Dose-Rate Effects Generated from Repair and Regeneration (재생과 증식에 기인하는 선량률 효과)

  • Yi Pon Nyong;Cho Kwan Ho;Marks Richard D.;Kim Jae Ho
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.171-183
    • /
    • 1989
  • A general effect for cell proliferation has been incorporated into Roesch's survival equation (Accumulation Model). From this an isoeffect formula for the low dose-rate regimen is obtained. The prediction for total doses equivalent to 60Gy delivered at the constant dose-rate over 7 days agrees well with the dose-time data of Paterson and of Green, when the parameter ratio A/B (${\approx}{\alpha{\mu}}/2{\beta}\;where\;{\mu}$ is the repair rate) is chosen to be 0.7Gy/h. When a constant proliferation rate and known facts of division delay are assumed, an isoeffect relation between low dose-rate treatment and acute dose-rate treatment can be derived. This formula in the regimens where proliferation is negligible predicts exactly the data of Ellis that 8 fractions of 5 Gy/day for 7 days are equivalent to continuously applied 60Gy over 7days, provided the A/B ratio is 0.7 Gy/h and the $\alpha/\beta$ ratio is 4Gy. Overall agreement between the clinical data and the predictions made by the formula at the above parameter values suggests that the biologcal end points used as the tolerance level in the studies by Paterson, Green, and Ellis all agree and they are not entirely the early effects as generally assumed. The absence of dose-rate effects observed in the mouse KHT sarcoma can better be explained in terms of a large value for the A/B ratio. Similarly, the same total dose used independently of the dose-rate to treat head and neck tumors by Pierquin can be justified.

  • PDF

사용전 및 사용후 DUPIC 핵연료의 방사선량률 분석

  • 김윤구;박범락;임재용;박광헌;황주호
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.799-804
    • /
    • 1995
  • DUPIC 핵연료의 사용전 그리고 사용후 조건에서 방사선량을 분석하였다. 사용후 핵연료로 35,000 MWD/MTU의 표준 연소도와 50,000 MWD/MTU의 고 연소도을 사용하였고 선량률을 계산하기 위해 CANDU의 핵연료 집합체을 균등 혼합체로 가정 하였다. 조사선량율은 건식가공을 거치지 않았을 때 매우 높은 수치를 나타내었지만 건식가공을 한 후에는 많이 감소하개 됨 을 볼 수 있었다. 특히 Cs에 민감한 반응을 보였고 Cs을 100% 제거하였을 경우 전체 선량율이 약 90%가 줄어드는 결과를 얻었다. 아울러 사용후 DUPIC핵연료의 선량율도 건식가공 방법에 많은 영향을 받고 있다.

  • PDF