• Title/Summary/Keyword: 선계산

Search Result 2,316, Processing Time 0.03 seconds

Analysis of Output Constancy Checks Using Process Control Techniques in Linear Accelerators (선형가속기의 출력 특성에 대한 공정능력과 공정가능성을 이용한 통계적 분석)

  • Oh, Se An;Yea, Ji Woon;Kim, Sang Won;Lee, Rena;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.185-192
    • /
    • 2014
  • The purpose of this study is to evaluate the results for the quality assurance through a statistical analysis on the output characteristics of linear accelerators belonging to Yeungnam University Medical Center by using the Shewhart-type chart, Exponentially weighted moving average chart (EWMA) chart, and process capability indices $C_p$ and $C_{pk}$. To achieve this, we used the output values measured using respective treatment devices (21EX, 21EX-S, and Novalis Tx) by medical physicists every month from September, 2012 to April, 2014. The output characteristics of treatment devices followed the IAEA TRS-398 guidelines, and the measurements included photon beams of 6 MV, 10 MV, and 15 MV and electron beams of 4 MeV, 6 MeV, 9 MeV, 12 MeV, 16MeV, and 20 MeV. The statistical analysis was done for the output characteristics measured, and was corrected every month. The width of control limit of weighting factors and measurement values were calculated as ${\lambda}=0.10$ and L=2.703, respectively; and the process capability indices $C_p$ and $C_{pk}$ were greater than or equal to 1 for all energies of the linear accelerators (21EX, 21EX-S, and Novalis Tx). Measured values of output doses with drastic and minor changes were found through the Shewhart-type chart and EWMA chart, respectively. The process capability indices $C_p$ and $C_{pk}$ of the treatment devices in our institution were, respectively, 2.384 and 2.136 for 21EX, 1.917 and 1.682 for 21EX-S, and 2.895 and 2.473 for Novalis Tx, proving that Novalis Tx has the most stable and accurate output characteristics.

Evaluation of Radiation Dose for Dual Energy CBCT Using Multi-Grid Device (에너지 변조 필터를 이용한 이중 에너지 콘빔 CT의 선량 평가)

  • Ju, Eun Bin;Ahn, So Hyun;Cho, Sam Ju;Keum, Ki Chang;Lee, Rena
    • Progress in Medical Physics
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • The paper discusses radiation dose of dual energy CT on which copper modulation layer, is mounted in order to improve diagnostic performance of the dual energy CT. The radiation dose is estimated using MCNPX and its results are compared with that of the conventional dual energy CT system. CT X-ray spectra of 80 and 120 kVp, which are usually used for thorax, abdominal, head, and neck CT scans, were generated by the SPEC78 code and were used for the source specification 'SDEF' card for MCNPX dose modeling. The copper modulation layer was located 20 cm away from a source covering half of the X-ray window. The radiation dose was measured as changing its thickness from 0.5 to 2.0 mm at intervals of 0.5 mm. Since the MCNPX tally provides only normalized values to a single particle, the dose conversion coefficients of F6 tally for the modulation layer-based dual energy CBCT should be calculated for matching the modeling results into the actual dose. The dose conversion coefficient is $7.2*10^4cGy/output$ that is obtained from dose calibration curve between F6 tally and experimental results in which GAFCHORMIC EBT3 films were exposed by an already known source. Consequently, the dose of the modulation layer-based dual energy cone beam CT is 33~40% less than that of the single energy CT system. On the basis of the results, it is considered that scattered dose produced by the copper modulation layer is very small. It shows that the modulation layer-based dual energy CBCT system can effectively reduce radiation dose, which is the major disadvantage of established dual energy CT.

A Rapid Analysis of 226Ra in Raw Materials and By-Products Using Gamma-ray Spectrometry (감마분광분석을 이용한 원료물질 및 공정부산물 중 226Ra 신속분석방법)

  • Lim, Chung-Sup;Chung, Kun-Ho;Kim, Chang-Jong;Ji, Young-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.35-44
    • /
    • 2017
  • A gamma-ray peak of $^{226}Ra$ (186.2 keV) overlaps with one of $^{235}U$ (185.7 keV) in a gamma-ray spectrometry system. Though reference peaks of $^{235}U$ can be used to correct the peak interference of $^{235}U$ in the analysis of $^{226}Ra$, this requires a complicated calculation process and a high limit of quantitation. On the other hand, evaluating $^{226}Ra$ using the correction constant in the overlapped peak can make a rapid measurement of $^{226}Ra$ without the complicated calculation process as well as overcome the disadvantage in the indirect measurement of $^{214}Bi$, which means the confinement of $^{222}Rn$ gas in a sample container and a time period to recover the secular equilibrium. About 93 samples with 6 species for raw-materials and by-products were prepared to evaluate the activity of $^{226}Ra$ using the correction constant. The results were compared with the activity of $^{214}Bi$, which means the indirect measurement of $^{226}Ra$, to validate the method of the direct measurement of $^{226}Ra$ using the correction constant. The difference between the direct and indirect measurement of $^{226}Ra$ was generally below about ${\pm}20%$. However, in the case of the phospho gypsum, a large error of about 50% was found in the comparison results, which indicates the disequilibrium between $^{238}U$ and $^{226}Ra$ in the materials. Application results of the contribution ratio of $^{226}Ra$ were below about ${\pm}10%$. The direct measurement of $^{226}Ra$ using the correction constant can be an effective method for its rapid measurement of raw materials and by-products because the activity of $^{226}Ra$ can be produced with a simple calculation without the consideration of the integrity of a sample container and the time period to recover the secular equilibrium.

The Effect of Photoneutron Dose in High Energy Radiotherapy (10 MV 이상 고에너지 치료 시 발생되는 광중성자의 영향)

  • Park, Byoung Suk;Ahn, Jong Ho;Kwon, Dong Yeol;Seo, Jeong Min;Song, Ki Weon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 2013
  • Purpose: High-energy radiotherapy with 10 MV or higher develops photoneutron through photonuclear reaction. Photoneutron has higher radiation weighting factor than X-ray, thus low dose can greatly affect the human body. An accurate dosimetric calculation and consultation are needed. This study compared and analyzed the dose change of photoneutron in terms of space according to the size of photon beam energy and treatment methods. Materials and Methods: To measure the dose change of photoneutron by the size of photon beam energy, patients with the same therapy area were recruited and conventional plans with 10 MV and 15 MV were each made. To measure the difference between the two treatment methods, 10 MV conventional plan and 10 MV IMRT plan was made. A detector was placed at the point which was 100 cm away from the photon beam isocenter, which was placed in the center of $^3He$ proportional counter, and the photoneutron dose was measured. $^3He$ proportional counter was placed 50 cm longitudinally superior to and inferior to the couch with the central point as the standard to measure the dose change by position changes. A commercial program was used for dose change analysis. Results: The average integral dose by energy size was $220.27{\mu}Sv$ and $526.61{\mu}Sv$ in 10 MV and 15 MV conventional RT, respectively. The average dose increased 2.39 times in 15 MV conventional RT. The average photoneutron integral dose in conventional RT and IMRT with the same energy was $220.27{\mu}Sv$ and $308.27{\mu}Sv$ each; the dose in IMRT increased 1.40 times. The average photoneutron integral dose by measurement location resulted significantly higher in point 2 than 3 in conventional RT, 7.1% higher in 10 MV, and 3.0% higher in 15 MV. Conclusion: When high energy radiotherapy, it should consider energy selection, treatment method and patient position to reduce unnecessary dose by photoneutron. Also, the dose data of photoneutron needs to be systematized to find methods to apply computerization programs. This is considered to decrease secondary cancer probabilities and side effects due to radiation therapy and to minimize unnecessary dose for the patients.

  • PDF

Association between Nutritional Knowledge and Dietary Behaviors of Middle School Children and Their Mothers (어머니의 영양지식과 식행동이 중학생 자녀의 식생활에 미치는 영향)

  • Lee, Jae-Sun;Choi, Young-Sun;Bae, Bok-Seon
    • Journal of Nutrition and Health
    • /
    • v.44 no.2
    • /
    • pp.140-151
    • /
    • 2011
  • Middle-school students (158 boys and 199 girls) and their mothers were asked about nutritional attitudes, nutritional knowledge, dietary habits, and food intake using a questionnaire to examine whether nutritional knowledge and dietary behaviors of mothers affected their children's dietary habits. Nutritional attitude scores (total, 15 points) and nutritional knowledge scores (total, 20 points) of girls were 11.24 and 16.13 points, respectively, which were significantly higher than 10.47 and 15.43 points for boys. Generally, mothers received higher points than their children for all scores surveyed, but the results were not significantly different between boys' mothers and girls' mothers. The mean nutrient adequacy ratio (MAR) was calculated from dietary nutrient intakes to assess overall quality of meals. The results showed that girls had a higher MAR than that of boys (0.89 vs. 0.86, p < 0.01). Relationships among variables were examined by Pearson's correlation coefficient within children and between children and their mothers. Significant positive correlations were observed between nutritional attitudes and knowledge in both boys and girls. In girls, positive correlations between nutritional attitudes and dietary habits, nutritional knowledge and dietary habits, and dietary habits and MAR were also sig-nificant. In boys, only dietary habits and MAR were correlated with those of their mothers. Nutritional attitudes, dietary habits, and the MAR of girls' mothers were significantly correlated with nutritional attitude, dietary habits and the MAR of girls. The results indicate that the influence of mothers on dietary behaviors of children was greater in girls than that in boys, suggesting that a gender-specific nutrition education program is needed for middle school students.

Effect of Composition of γ-Al2O3/SiO2 Mixed Support on Fischer-Tropsch Synthesis with Iron Catalyst (철 기반 촉매의 Fischer-Tropsch 합성에서 γ-Al2O3/SiO2 혼합 지지체 조성의 영향)

  • Min, Seon Ki;No, Seong-Rae;You, Seong-sik
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • Fischer-Tropsch synthesis is the technology of converting a syngas (CO+$H_2$) derived from such as coal, natural gas and biomass into a hydrocarbon using a catalyst. The catalyst used in the Fischer-Tropsch synthesis consists of active metal, promoter and support. The types of these components and composition affect the reaction activity and product selectivity. In this study, we manufactured an iron catalyst using ${\gamma}-Al_2O_3/SiO_2$ mixed support (100/0 wt%, 75/25 wt%, 50/50 wt%, 25/75 wt%, 0/100 wt%) by an impregnation method to investigate how the composition of ${\gamma}-Al_2O_3/SiO_2$ mixed support effects on the reaction activity and product selectivity. The physical properties of catalyst were analyzed by $N_2$ physical adsorption and X-Ray diffraction method. The Fischer-Tropsch synthesis was conducted at $300^{\circ}C$, 20bar in a fixed bed reactor for 60h. According to the results of the $N_2$ physical adsorption analysis, the BET surface area decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the pore volume and pore average diameter increase as the composition of ${\gamma}-Al_2O_3$ decreases except for the composition of ${\gamma}-Al_2O_3/SiO_2$ of 50/50 wt%. By the results of the X-Ray diffraction analysis, the particle size of ${\alpha}-Fe_2O_3$ decreases as the composition of ${\gamma}-Al_2O_3$ decreases. As a result of the Fischer-Tropsch synthesis, the CO conversion decreases as the composition of ${\gamma}-Al_2O_3$ decreases, and the selectivity of C1-C4 decreases until the composition of ${\gamma}-Al_2O_3$ was 25 wt%. In contrast, the selectivity of C5+ increases until the composition of ${\gamma}-Al_2O_3$ is 25 wt%.

Development of the Monte Carlo Simulation Radiation Dose Assessment Procedure for NORM added Consumer Adhere·Non-Adhere Product based on ICRP 103 (ICRP 103 권고기반의 밀착형·비밀착형 가공제품 사용으로 인한 몬테칼로 전산모사 피폭선량 평가체계 개발)

  • Go, Ho-Jung;Noh, Siwan;Lee, Jae-Ho;Yeom, Yeon-Soo;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.3
    • /
    • pp.124-131
    • /
    • 2015
  • Radiation exposure to humans can be caused by the gamma rays emitted from natural radioactive elements(such as uranium, thorium and potassium and any of their decay products) of Naturally Occurring Radioactive Materials(NORM) or Technologically Enhanced Naturally Occurring Radioactive Materials(TENORM) added consumer products. In this study, assume that activity of radioactive elements is $^{238}U$, $^{235}U$, $^{232}Th$ $1Bq{\cdot}g^{-1}$, $^{40}K$ $10Bq{\cdot}g^{-1}$ and the gamma rays emitted from these natural radioactive elements radioactive equilibrium state. In this study, reflected End-User circumstances and evaluated annual exposure dose for products based on ICRP reference voxel phantoms and ICRP Recommendation 103 using the Monte Carlo Method. The consumer products classified according to the adhere to the skin(bracelet, necklace, belt-wrist, belt-ankle, belt-knee, moxa stone) or not(gypsum board, anion wallpaper, anion paint), and Geometric Modeling was reflected in Republic of Korea "Residential Living Trend-distributions and Design Guidelines For Common Types of Household.", was designed the Room model($3m{\times}4m{\times}2.8m$, a closed room, conservatively) and the ICRP reference phantom's 3D segmentation and modeling. The end-user's usage time assume that "Development and Application of Korean Exposure Factors." or conservatively 24 hours; in case of unknown. In this study, the results of the effective dose were 0.00003 ~ 0.47636 mSv per year and were confirmed the meaning of necessary for geometric modeling to ICRP reference phantoms through the equivalent dose rate of belt products.

Performance Measurement of Siemens Inveon PET Scanner for Small Animal Imaging (소동물 영상을 위한 Siemens Inveon PET 스캐너의 성능평가)

  • Yu, A-Ram;Kim, Jin-Su;Kim, Kyeong-Min;Lee, Young-Sub;Kim, Jong-Guk;Woo, Sang-Keun;Park, Ji-Ae;Kim, Hee-Joung;Cheon, Gi-Jeong
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.145-152
    • /
    • 2010
  • Inveon PET is a recently developed preclinical PET system for small animal. This study was conducted to measure the performance of Inveon PET as recommended by the NEMA NU 4-2008. We measured the spatial resolution, the sensitivity, the scatter fraction and the NECR using a F-18 source. A 3.432 ns coincidence window was used. A $1\;mm^3$ sized F-18 point source was used for the measurement of spatial resolution within an energy window of 350~625 keV. PET acquisition was performed to obtain the spatial resolution from the center to the 5 cm offset toward the edge of the transverse FOV. Sensitivity, scatter fraction, and NECR were measured within an energy window of 350~750 keV. For measuring the sensitivity, a F-18 line source (length: 12.7 cm) was used with concentric 5 aluminum tubes. For the acquisition of the scatter fraction and the NECR, two NEMA scatter phantoms (rat: 50 mm in diameter, 150 mm in length; mouse: 25 mm in diameter, 70 mm in length) were used and the data for 14 half-lives (25.6 hr) was obtained using the F-18 line source (rat: 316 MBq, mouse: 206 MBq). The spatial resolution of the F-18 point source was 1.53, 1.50 and 2.33 mm in the radial, tangential and axial directions, respectively. The volumetric resolution was $5.43\;mm^3$ in the center. The absolute sensitivity was 6.61%. The peak NECR was 486 kcps @121 MBq (rat phantom), and 1056 kcps @128 MBq (mouse phantom). The values of the scatter fraction were 20.59% and 7.93% in the rat and mouse phantoms, respectively. The performances of the Inveon animal PET scanner were measured in this study. This scanner will be useful for animal imaging.

Effects of Scintillation Crystal Surface Treatments on Small Gamma Camera Imaging (섬광체 옆 표면처리가 소형 감마카메라 영상에 미치는 효과)

  • Kim, J. H.;Choi, Y.;Kim, J. Y.;Oh, C. H.;Kim, S. E.;Choe, Y. S.;Lee, K. H.;Joo, K. S.;Kim, B. T.
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.6
    • /
    • pp.515-521
    • /
    • 1999
  • Scintillator crystal is an important part and detcrmines performance characteristics of the gamma camera. We investigated the offects of scintillation crystal surface treatment on gamma camera imaging. Nal(TI) and Csl(Tl) scintillators. 20 mm diameter and 10 mm thickness, applied with two different surface treatments, white and black reflcetors, were applied to Nal(Tl) and Csl(Ti). The optical properties of generated scintillation light were evaluated by Monte Carlo simulation method and by actual measurement using a position sensitive photomultiplier tube (PSPMT). We measured sensitivity, energy resolution and spatial resolution of gamma camera with the various scintillators coupled to a PSPMT. In the simulation. Nal(Tl)-white prosented the best sensitivity. In the measurements, the sensitivities and the intrinsic spatial resolutions of Nal(Tl)-white, Nal(Tl)-black. CsI(Tl)-white, CsI(Tl)-black were 2920, 2322, 1754, 1401 cps/$\mu$ci and 5.2, 4.5, 7.0, 6.3 mm FWHM. respectively. Their intrinsic energy resolutions were mesured 12.5, 23.5, 20.5, 33.3% FWHM at 140 keV Tc-99m. In this study, we investigated the offects of a side surface treatment of the scintillator on the gamma camera imaging. Simulation and measurement prescnted similat trends. Based on the results, we concluded that the surface of th NaI(Tl)seintillator must be treated by absorptive materials in order to develop the gamma camera having good spatial resolution.

  • PDF

Result of Radiation Therapy of Cerebellar Medulloblastoma - with Emphasis on the Neuraxis Dose - (전중추신경계 조사선량을 중심으로 한 수아세포종의 방사선치료성적)

  • Kim Joo Young;Kim Il Han;Ha Sung Whan;Park Charn Il
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.69-77
    • /
    • 1993
  • Treatment of cerebellar medulloblastoma has been much improved with modern surgical technique for gross total tumor removal and adequate radiation therapy for the whole craniospinal axis. Questions have been arosen about the optimal radiation dose for the preventive treatment of whole cranium and whole spinal axis. Recently, many authors have reported their treatment results as comparable to older data, using lower than conventional dose of 3,600 cGy-4,000 cGy. For 50 patients treated between 1981 and 1990 at the Department of Radiation Therapy of SNUH, retrospective analysis was done for the treatment result, especially the neuraxis control, by radiation dose for the presymptomatic area of the disease. Analysis only by total spinal dose did not give any significant difference. But further analysis by following patient group; 3,600 cGy/150 cGy (n=6), 3,000 cGy/150 cGy (n=10), 2,400 cGy/150 cGy (n=17) and 2,400 cGy/100-120 cGy (n=11) showed significant improvement of neuraxis control by decreasing order (p =0.003). There was no significant difference in overall survival between the groups. For the 19 patients who had been confirmed initially as having no neuraxis disease, TDF 30 was the cur-off value that could prevent neuraxis failure (p =0.004). We couldn't define any TDF value that give reasonable control for the patient group with positive CSF study at initial diagnosis.

  • PDF