• Title/Summary/Keyword: 석회복합체

Search Result 15, Processing Time 0.031 seconds

Studies on the Environmentally-friendly Production of Ginseng(Panaxs ginseng C.A. Mayer) by Lime Sulfur Treatment (석회유황합제를 이용한 청정 인삼 생산 연구)

  • Chang, K.J.;Sung, I.J.;Lee, S.S.;Ahn, C.H.;Byun, J.M.;Park, C.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.15 no.1
    • /
    • pp.183-202
    • /
    • 2013
  • The demand of ginseng which has attracted many people for a long time has expanded further with great spotlight ; but it has caused anxiety of some safety-sensitive customers due to unavoidable pesticides and its weakness for disease and insect pest. On the other hand, sluggish studies on effective doses of ginseng and red ginseng which is produced and processed after hardship have worsened confusion of customers. Against this backdrop, this study is about to find out measures for safe ginseng cultivation and effective dose of white or red ginseng which are safely produced and reaches meaningful conclusions as follows ; As for a study to minimize the use of chemical fertilizers and pesticides or to change them into environmentally-friendly products, ginseng cultivation utilizing Lime Sulfur complex might be an alternative. The effects of Lime Sulfur complex are great on ginseng seeding with under 200 times compound KHCO3 and five-year-old ginseng with over 200 times compound using NaHCO3. When using with green materials like Bordeaux mixture, there would be great potential to realize ginseng without pesticide use.

An Experimental Study on the Mechanical Properties of Fiber Reinforced Fly Ash.Lime.Gypsum Composites (섬유보강 플라이애쉬.석고.복합체의 역학적특성에 관한 실험적 연구)

  • 박승범
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.4
    • /
    • pp.145-155
    • /
    • 1993
  • The results of an experimental study on the manufacture and the mechanical properties of fiber reinforced fly ash$\cdot$lime$\cdot$gypsum composites are presented in this paper. 'The composites using fly ash, lime, and gypsum were prepared with various fibers (PAN-derived and Pitch-derived carbon fiber, alkali-resistance glass fiber) and a small amount of polymer emulsion-styrene butadiene rubber latex (SBR). As the test results show, the manufacturing process technology of fly ash$\cdot$lime$\cdot$gypsum composites was developed and its optimum mix proportions were successfully proposed. And the flexural strength and toughness of fiber reinforced fly ash$\cdot$lime $\cdot$gypsum composites were increased remarkably by fiber contents, but the compressive strength of the composites were influenced by the kinds fiber more than by the fiber contents. Also, the addition of a polymer emulsion to the composites decreased the bulk specific gravity, but the compressive and flexural strength, and the toughness of the composites were not influenced by it, but were considerably improved by increasing fiber contents.

Strength Characteristics of Mortar with Lime Composites and Natural Fiber (천연섬유와 석회복합체의 모르터 강도 성상에 관한 연구)

  • Hwang, Hey Zoo;Kim, Tae Hoon;Yang, Jun Hyuk
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.153-158
    • /
    • 2010
  • The objective of this study was to investigate the strength characteristics of mortar with lime composites using natural fiber or superplasticizer. Lime composites consist of lime and pozzolan materials. Flow according to adding natural fiber decreased and mortar proportion added cellulose fiber showed a higher strength characterisitics than other natural fiber. but compressive and shear strength in use of superplasticizer is not effective largely. In addition, lime composites, as an environment-friendly material, may help reduse $CO_2$, and save the energy. also this materials can be recycled in environmental aspects. afterwards, further in-depth studies will be necessary for cracks and durability with respect to its wide different applications, in applying it as a construction material.

Increasing the Strength with Earth and Soil through Optimum Micro-filler Effect and Lime Composite Addition (흙과 모래의 최밀충전효과와 석회복합체의 첨가에 따른 강도 증진)

  • Hwang, Hey-Zoo;Roh, Tae-Hak;Kang, Nam-Yi
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.95-101
    • /
    • 2011
  • Earth has been used as a building material not only our country but also many foreign countries in the world. In foreign countries, we can often find the high-storied earthen houses which have been maintained for over several hundred years, which means the fact that earth differs in durability according to the methods of utilizing earth. So, the purpose of this study is to progress the fundamental research for utilizing earth as a wall material. Also, the another purpose of this study is to utilize the optimum micro-filler effect which adjusts the grain size of earth and the lime composite which promotes chemical combining power, and so examine whether earth material ensures its high compressive strength. This study applied both of rammed earth method and pour earth method among earth architecture methods. This study investigated compressive strength, slump, and air content according to unit binder weight. On the basis of such experimental results, this study derived the following conclusions. 1) Optimum micro-filler mixtures reduce a lot of fine particles contained in earth. If optimum micro-filler mixtures are used as aggregates, they develop lower W/B and relatively higher strength than general earth. 2) In this study, which uses optimum micro-filler earth mixtures and lime composite, rammed earth method develops 29MPa and pour earth method develops 28MPa in 28 days compressive strength. Such strengths can be utilized in building walls.

An Fundamental Study on the Earth Wall Material Development by using of Lime Composition and Earth (석회복합체와 흙을 이용한 흙벽체 재료 개발에 관한 기초적 연구)

  • Hwang, Hey zoo;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.115-121
    • /
    • 2010
  • Lime was the solidifier mostly used at the fields of construction and civil works in the past. however, the development of Portland cement remarkably reduced the use of it. Recently as the concernment on circumstances gets higher, lime wined attention again as an eco-friendly material and was used at earth-using construction. This study examined the physical and chemical capacity of lime complexes with lime capacity improved, and performed fundamental study on the way to concretize by mixing it with earth. As a result, lime complex pressure strength was lower than cement pressure strength but it showed the possibility that its strength was improved by W/B control. The measurement of XRD after paste formation confirmed a compound generated by the reaction of Ca2+ion and Si, Al, and Fe from pozzolan reaction. A earth wall experiment by using lime complexes and earth showed that the higher, WB or the lower the quantity of unit combined materials, the lower the pressure strength was. The maximum pressure strength was maximum 11MPa when the quantity of unit combined materials was 450. It is because the composed earth particles had a high content of micro powder less than silt, so a lot of combination are demanded to secure fluidity. As a result of peptization experiment, after hardening, the material was not dissolved, which informed of the possibility of use as an outer subsidiary material. If the material is hardened by mold formation method, natural hardening crack appears. Cast expresses smart surface quality and enables to design for multiple purpose. The result shows the possibility of construction of low-story structures by using earth wall made of lime complexes and earth.

Evaluation as to whether field pour earth wall construction is possible (흙타설 벽체의 현장 시공 가능성 검토)

  • Hwang, Hey-Zoo;Kang, Nam-Yi;Yang, Jun-hyuk
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.99-104
    • /
    • 2012
  • In event of selecting construction materials, taking ones found easily around make embodied energy saved. The earth construction could be an eco-friendly engineering from a views of keeping the embodied energy. The pour earth method construction, as one of earth constructions, improves liquidity of earth-mixed properties to build walls or foundations. This study is aimed at evaluating possibilities as to machinery constructions using pumping cars or excavators to be applied on natural non-dried earth which are purchased from sites neighboring to subject building. The study showed that the pumping car used construction was smoothly carried out without any remarkable difficulties and further, a compressed strength was found to keep a certain degree to possibly construct low-story buildings. However, it showed some different levels as to a compressed strength by locations of buildings. In the construction course, we couldn't use remicon plants or a remicon due to field conditions and we are forced to take excavators in compounding or mixing works. But, it is evaluated that actually liquidity or compressed strength will be better than in case of using machineries like remicon plants. These results make us determine that the wall construction using machineries is possible.

Histological Changes in the Normal Tissues of Rat after Local Application of the Holmium-166-Chitosan Complex attached to Biodegradable Solid Material (생분해성 고형물에 흡착시켜 실험동물에 국소 투여한 홀미움- 166-키토산 복합체의 투여량, 기간 및 부위에 따른 조직의 괴사 정도와 양상)

  • Lee, Jong-Seok;Jeon, Dae-Geun;Cho, Wan-Hyung;Lee, Soo-Yong;Oh, Jung-Moon;Kim, Jin-Wook
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.9 no.2
    • /
    • pp.190-199
    • /
    • 2003
  • Purpose: The aim of this study was to find out a clinically appliable method to insert a biodegradable solid material containing holmium-166-chitosan complex into the surgical field, and to evaluate the histological changes in the normal tissues after ${\beta}$ -ray irradiation from holmium-166 according to the dose, period and type of tissues. Materials and Methods: 3.0 mCi, 50 ${\mu}l$ of the liquid state $^{166}$Ho-chitosan complex was attached to the absorbable gelatin sponge. The radiation activity measured by dose caliberator was 1.5 mCi. These $^{166}$Ho-chitosan complex containing absorbable gelatin sponges were inserted into the thigh muscles and over the femur bones of the Wistar rats. The cases were evaluated at 2 weeks after insertion, and 4, 6 weeks with respect to the histological changes of the soft tissues and bone, the depth of the tissue necrosis, and the changes of the $^{166}$Ho-chitosan complex containing absorbable gelatin sponges. Results: At 2 weeks, the muscles showed coagulation necrosis, degenerating myocytes, regenerating myocytes, intermuscular edema, and inflammatory cells. The necrosis depth was 3.3 mm. In the bones, there was no osteocyte in the lacuna of cortex (empty lacuna), marrow fibrosis, inflammation. The necrosis depth was 2.9 mm. At 4 weeks, in the muscle, calcification and increased fibrosis with necrosis depth by 3.3 mm were the additional findings. In the bone, marrow fibrosis with necrosis depth by 3.3 mm were detected. At 6 weeks, soft tissue shrinkage, increased fibrosis and granulation tissue formation, and nearly resolving inflammatory reaction were the findings. Conclusion: The local application of the $^{166}$Ho-chitosan complex attached to biodegradable gelatin material with surgery in the laboratory animals resulted in no mortality and morbidity, and satisfactory tissue necrosis. Holmium-166 can be applied to the treatment of the malignant tumor patients.

  • PDF

Survey of the Geology and Geological Structure of the Foundations at a Construction Site for Tram (경전철 건설구간의 지질 및 지질구조특성에 관한 지반조사)

  • Lee, Byung-Joo;SunWoo, Chun;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2010
  • The foundation area for tram contains biotite gneiss, quartzo-feldspathic gneiss, calc-silicate rock, and porphyroblastic gneiss of the pre-Cambrian Kyeonggi gneiss complex. These rocks record at least three stages of deformation, as indicated by fold sets of contrasting orientations (D1-D3). Joints are generally steeply dipping and strike NW-SE to WNW-ESE. The Gonjiam Fault, which strikes WNW-ESE, follows a river in the area. The fault possesses a 3-m-wide fracture zone, a 10-m-wide damage zone, and is 15 km long. Two tunnels have been constructed through the biotite gneiss. The geometric relationship between discontinuities (e.g., joints and foliation) and tunneling direction reveals that set 3 of the AA tunnel is unstable but that BB tunnel is relatively safe.

Metamorphism of gneiss complex in the Paju-Gimpo area, northwestern Gyeonggi massif, Korea (경기육괴 북서부의 파주-김포지역에 분포하는 편마암복합체의 변성작용)

  • Ahn, Kun-Sang;Park, Young-Seog;Kim, Cheong-Bin;Chen, Jiangfeng
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.177-189
    • /
    • 1998
  • Proterozoic gneisss complex of the Paju-Gimpo area, Northwestern Gyeonggi Massif, consists of mainly gneiss and schist with locally intercalated quartzite and metamorphic calcareous rocks. Mineral assemblages of the gneiss and schist are classified into two type: sillimanite free (garnet zone) and sillimanite bearing (sillimanite zone) assemblages. In the Goyang area, Kyanite occurs as metastable relict grain in two gneiss samples, in which sillimanite, garnet, biotite, K-feldspar and plagioclase occur. Cordierite bearing mineral assemblages of gneiss are biotite+garnet+sillimanite+cordierite+plagioclase+quartz ($\pm$K-feldspar, muscovite), and represent the upper amphibolite or granulite facies metamorphism. The metamorphic complex has experienced two different regional metamorphism. The prograde metamorphism is a medium-pressure type characteries by kyanite. The peak metamorphic P-T condition of the prograde metamorphism calculated from the kyanite bearing rock is 7.0~9.4 kb and $718~778^{\circ}C$. The retrograde metamorphism, after the prograde metamorphism, is the low-pressure type characteries by occurrence of cordierite. The peak metamorphic P-T condition of later calculated from the cordierite bearing rock is 3.6~5.5 kb and $750~889^{\circ}C$. Together with the occurrence of relict kyanite, garnet+biotite+plagioclase assemblage as relict in the cordierite, and the result of estimated P-T metamorphic conditions indicate a clockwise P-T path.

  • PDF

Biomineralization Strategy of Biocomposites on Regenerated Shell: Chitin Synthesis and Regenerated Shell Formtation by Deformed Oyster Shell (생체복합체의 재생패각 합성전략: 참굴 패각의 변형에 따른 키틴 합성 및 패각재생)

  • Lee, Seungwoo;Park, Seungbin;Yeong, Donghee;Choi, Cheongsong
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.529-534
    • /
    • 2008
  • The normal shell and the regenerated oyster shell, Crassostrea gigas, are separated according to the characteristics of inner shell morphology. To study characteristics of chitin obtained from the regenerated shell, chitin prepared by acid and alkali process is analyzed by FT-IR (Fourier transform infrared spectrometer) and XRD (X-ray Diffractometer). The content of insoluble protein in the normal shell was more than doubled as compared with that in the regenerated shell. A comparison of secondary structure of the normal shell and the regenerated shell revealed that the content of random of the regenerated shell was above 47%, indicating an amount in the structural unordered state. Through amino acid composition analysis and secondary protein structure of soluble protein isolated from the normal shell and the regenerated shell, it was found that there are differences in biomineralization strategy of the regenerated shell as compared to the normal shell. The relatively low hardness of the regenerated shell is caused by the change of amino acid composition and ordered secondary protein structure as compared to hardness of the normal shell.