• Title/Summary/Keyword: 석탄 촉매 가스화

Search Result 48, Processing Time 0.021 seconds

Status and Plans on Low Emission Coal Energy (무공해 석탄에너지 현황 및 계획)

  • Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.856-856
    • /
    • 2009
  • 석유 및 천연가스를 대체하는 자원으로 석탄이 유망하다고 전망하고 있다. 미국에서는 6대 파괴력이 있는 기술로 청정석탄기술이 선정되었고, 한국에서도 15대 그린에너지 중 하나인 청정연료에 석탄전환기술이 포함되어 전략로드맵이 작성되고 있다. 국내에서 추진되고 있는 석탄기술은 석탄가스화를 기반으로 하고 있다. 석탄가스화는 고체연료인 석탄을 $1000^{\circ}C$ 이상의 고온에서 산소와 반응시켜 일산화탄소와 수소가 주성분인 합성가스로 전환하는 기술이다. 석탄을 가스화하면 석탄에 포함된 불순물을 쉽고 완벽하게 제거할 수 있으며 특히 CO2 제거를 값싸게 할 수 있어 청정화가 가능하다. 최근 고유가를 겪으면서 열량이 높은 고급탄의 확보가 어려워지면서 가격이 낮고 수급이 용이한 저급탄을 활용하는 기술의 수요가 발생되어 국내에서 기업을 중심으로 저급탄을 고효율로 가스화하는 기술 개발이 시도되고 있다. 정제된 석탄가스는 성분을 조절하여 촉매에 의해 메탄으로 전환시킬 수 있고, 이렇게 제조된 가스를 합성천연가스(SNG)라 한다. 값싼 저급탄을 사용하면 SNG를 천연가스보다 저렴하게 생산할 수 있다. 국내 기업이 SNG 제조 실증시설을 도입하고, 동시에 핵심기술인 SNG 합성반응공정을 개발하는 사업을 추진하고 있다. 석탄가스를 촉매반응에 의해 디젤 및 �F싸로 전환하는 석탄간접액화기술은 현재 남아공 Sasol사에서 상업적으로 운전되고 있는 기술이나 국내로의 기술이전이 거의 불가능하다. 철을 기반으로 하는 고유 촉매와 scale-up이 가능한 반응기가 핵심인 기술로 국내에서 세미-파일럿급 액화공정 기술개발이 진행중이다. 전세계적으로 석탄액화공장의 수요가 현재의 15만배럴/일에서 2030년 240만배럴/일로 증가한다고 예측된다. 따라서 200조원 이상의 플랜트 시장이 기대되며 국산 가스화, SNG 및 액화기술로 상당부분의 시장을 장악하고자 한다.

  • PDF

Acid-gas Removal Characteristics of Coal Gasification System using FeMgO catalyst (FeMgO 촉매를 이용한 산성가스 정제 특성)

  • Park, Jun-Sung;Hwang, Sang-Yeon;Lee, Seung-Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.457-460
    • /
    • 2007
  • 석탄가스화 기술은 석탄을 고온/고압 조건에서 가스화 반응시켜 CO와 $H_2$가 주성분인 합성가스(syngas)로 전환시키는 기술이다. 그러나 가스화 반응으로 인해 합성가스 내에는 불순물인 $H_2S$, COS, $NH_3$ 등의 오염 물질이 발생하게 되며, 가스터빈의 부식, 촉매의 피독, 전극의 성능 저하 현상 등을 일으켜 효율을 저하시키게 된다. 이에 본 연구에서는 FeMgO 촉매를 제거용매로 사용하여 $H_2S$를 효과적으로 제거하기 위하여 Lab-scale 탈황 설비를 제작하였으며, 석탄 가스화 운전에 연계하여 합성가스 내 포함된 산성가스 정제 특성에 관한 연구를 진행하였다.

  • PDF

Coal Gasification using Catalyst in a Fluidized Bed Reactor (유동층 반응기에서 촉매를 이용한 석탄 가스화반응 특성)

  • 이운재;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.129-132
    • /
    • 1995
  • 상압의 유동층반응기 (0.1 m-i.d x 1.6 m-high) 에서 호주탄을 수증기와 공기를 사용하여 가스화 하였다. 또한 반응기에서 촉매효과를 고찰하기 위해 $K_2$SO$_4$+Ni(NO$_3$)$_2$ 촉매를 호주탄에 담지하여 가스화반응을 수행하였다. 생성가스조성, 생성가스량, 탄소전환율, cold gas efficiency 및 발열량 등에 대한 유동화속도 (2~5U$_{mf}$), 반응온도 (750~90$0^{\circ}C$), 공기/석탄 비 (1.6~3.2), 수증기/석탄 비 (0.63~l.26)의 영향을 조사하였다. 탄소전환율, 생성 가스량, 생성가스 발열량 및 cold gas efficiency 는 유동화속도와 반응온도의 증가에 따라 증가하였다. 공기/석탄 비가 증가함에 따라 탄소전환율과 생성가스량 및 cold gas efficiency 는 증가하지만 생성가스 발열량은 감소하였다. 수증기/석탄 비의 증가에 따라 발열량, cold gas efficiency 및 생성가스량은 증가하였으며, 탄소 전환율은 거의 일정하였다. 촉매 가스화반응에서 유동화속도, 반응온도, 공기/석탄 비 및 수증기/석탄 비의 증가에 따라 탄소 전환 율, 생성가스량, 생성가스 발열량 및 cold gas efficiency 는 크게 향상됨을 알 수 있었다.

  • PDF

Characteristics of DME Production Using Synthesis Obtained from Coal Gasification (석탄가스화를 통해 얻어진 합성가스 정제 및 DME(Dimethyl Ether) 제조 특성 연구)

  • Yoo, Young-Don;Lee, Seung-Jong;Lee, Do-Youn;Yun, Yong-Seung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.792-795
    • /
    • 2007
  • 본 연구 목적은 석탄 가스화를 통해 얻어진 합성가스를 이용하여 국내에서 개발된 DME 합성 촉매를 사용하여 DME 전환 공정에 대한 특성을 파악하는 것이다. 특히, DME 합성 반응에 가장 큰 영향을 미치는 합성 반응로의 온도 제어를 위하여 thermosyphon 시스템을 개발하여 DME 합성 반응에 최적온도로 알려진 $230{\sim}260^{\cdot}C$ 범위에서 제어가 가능함을 확인 하였다. 석탄 40 kg/h를 공급하였을 때 합성가스 유량은 $80{\sim}100$ $Nm^3/h$ 정도를 얻었다. DME 합성 반응에 사용한 촉매는 합성가스로부터 메탄올을 얻기 위한 촉매와 메탄올의 탈수 촉매(Cu/Zn/Al+r-$Al_2O_3$)를 혼합한 촉매를 사용하였다. DME 합성 반응로의 GHSV(1/kg$^{\cdot}C$cat h)는 $2500{\sim}3000$ 정도이며, 운전 압력 60기압에서 $H_2$ 전환율 $65{\sim}75%$, DME 선택도는 $69{\sim}79%$ 정도를 얻었다.

  • PDF

Estimation of SNG reaction on Ni catalyst from various support and promoter (담체 및 조촉매 변화에 따른 Ni 촉매상의 SNG 반응 평가)

  • Ryu, Jaehong;Kang, Sukhwan;Kim, Suhyun;Kim, Jinho;Lee, Sunki;Yoo, Youngdon;Lim, Hyojun;Byun, Changdae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.116.2-116.2
    • /
    • 2010
  • 석유의 고갈과 고유가 시대에 직면한 현재 전 세계적으로 매장량이 풍부하고 안정적으로 공급이 가능한 석탄 활용에 대한 관심이 급격히 증가하고 있다. 석탄의 활용 분야 중 석탄 가스화(Coal gasifier)에서 유도된 합성가스를 이용하여 합성천연가스(SNG) 생산을 할 수 있는 메탄화(Methanation) 공정에서는 대부분 Ni계열 촉매를 사용하고 있는데, 촉매를 설계하는 관점에서 담체(Support), 조촉매(Promoter), Ni의 함량 등과 같은 설계 변수에 따라 촉매의 활성과 함께 메탄 수율이 결정된다. 본 연구에서는 다양한 담체상에 Ni를 담지 하여 20bar 압력에서 SNG 반응에 높은 활성을 보일 수 있는 촉매를 확보하고자 실험을 수행하였으며, 그 결과 $NiO/SiO_2-Al_2O_3$ 촉매가 가장 우수한 활성을 보이는 것을 알 수 있었다. 또한 $NiO/SiO_2-Al_2O_3$ 상에 Cerium, Ferric oxide 조촉매를 첨가하여 SNG 반응 활성 평가를 수행하였다.

  • PDF

Methanation of syngas on Ni-based catalyst with various reaction conditions (석탄 합성가스를 이용한 온도 및 압력변화에 대한 메탄화 반응 특성)

  • Kim, Suhyun;Yoo, Youngdon;Ryu, Jaehong;Byun, Changdae;Lim, Hyojun;Kim, Hyungtaek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.129.1-129.1
    • /
    • 2010
  • 석탄가스화로부터 얻어진 합성가스는 CO, $H_2$가 주성분으로, 그 자체를 연료로 사용하여 발전을 하거나 또는 적절한 정제, 분리 및 합성을 통해 다양한 원료물질을 생산할 수 있다. 이러한 석탄의 청정 사용 기술은 최근의 에너지 분야에서 많은 관심을 불러일으키고 있는 고유가 현상 및 석유자원 고갈에 대비할 수 있는 현실적인 방법의 하나로 여겨지고 있다. 석유를 대체할 에너지원으로서 석탄을 이용하는 다양한 응용 방법 중의 하나로 가스화 반응을 통해 발생하는 합성가스를 이용한 SNG 제조 공정을 들 수 있는데, 이는 석탄 등의 고체 시료를 이용하여 메탄이 주성분인 연료가스를 생산하는 것이다. SNG(Synthesis Natural Gas 또는Substitute Natural Gas)는 합성천연가스 또는 대체천연가스로 불리어지는데 주로 석탄의 가스화를 통해 얻어진 합성가스(syngas 또는 synthesis gas)인 CO, $H_2$를 촉매에 의한 합성반응을 통해 얻을 수 있다. SNG 합성 반응(메탄화 반응)은 보통 수성가스 전환 공정과 가스 정제 공정을 거친 합성가스를 $CH_4$로 전환하는 것으로 석탄을 이용한 SNG 제조 공정에서 가장 핵심 공정인 메탄화 반응은 높은 발열반응으로 주로 니켈 촉매를 사용하며 $250{\sim}400^{\circ}C$에서 반응이 이루어진다. SNG 합성 반응은 공급되는 합성가스의 조성($H_2$/CO 비), 공급되는 합성가스의 유량과 반응기에 충진된 촉매의 부피와의 관계를 나타낸 공간속도, 반응온도 등의 조건에 따라 반응 특성이 달라질 수 있다. 가스화 반응을 통해 생성되는 합성가스를 이용한 SNG 합성반응(메탄화 반응)의 특성을 파악하기 위하여 Lab-scale 규모의 고정층 반응기를 이용하여 Ni 함량이 다른 2종류의 촉매를 대상으로 반응온도 및 압력에 따른 CO 전환율, $CH_4$ 선택도, $CH_4$ 생산성 변화를 파악하였다. 실험 결과 반응기의 온도가 350도 이상의 조건에서 CO 전환율은 99.8%이상, $CH_4$ 선택도는 90.7%이상으로 나타났으며, 공간속도가 2,000 1/h 이상의 조건에서는 $CH_4$ 생산성이 500 ml/g-cat, h을 만족하였다.

  • PDF

Comparative Studies on K2CO3-based Catalytic Gasification of Samhwa Raw Coal and Its Ash-free Coal (삼화 원탄과 무회분탄의 촉매(K2CO3) 가스화 반응성 비교 연구)

  • Kong, Yongjin;Lim, Junghwan;Rhim, Youngjoon;Chun, Donghyuk;Lee, Sihyun;Yoo, Jiho;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.218-225
    • /
    • 2014
  • Catalytic gasification of raw coals at mild condition is not realized yet mainly due to deactivation of catalysts via their irreversible interaction with mineral matters in coal. In this work, the gasification behavior of ash-free coal (AFC) was compared with that of the parent raw coal. In order to modify the gasification conditions, the raw coal gasified with fixed variables (water supply, space velocity, temperature, catalysts) in a fixed bed reactor. When catalysts are added by physical mixing method with coal, $K_2CO_3$ was the most effective additives for steam gasification of coal. However, the activity of ash-free coal (AFC) was much less reactive than raw coal due to high temperature extraction in a 1-methylnaphthalene under 30bar at $370^{\circ}C$ for 1 h, almost removed oxygen functional groups, and increased carbonization. The addition of $K_2CO_3$ in AFC achieved higher conversion rate at low temperature ($700^{\circ}C$). At that time, the molar ratio of gases ($H_2/CO$ and $CO_2/CO$) was increased because of water-gas shift reaction (WGSR) by addition of catalysts. This shows that catalytic steam gasification of AFCs is achievable for economic improvement of gasification process at mild temperature.

The Study of CO2 Gasification of Low Rank Coal Impregnated by K2CO3, Mn(NO3)2, and Ce(NO3)3 (저급석탄에 K2CO3와 Mn(NO3)2 및 Ce(NO3)3이 CO2-석탄 가스화 반응에 미치는 영향)

  • Park, SangTae;Choi, YongTaek;Shon, JungMin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.312-318
    • /
    • 2011
  • We have investigated the kinetics and catalytic activity of $CO_2$-lignite gasification with various metal precursors as catalysts. $K_2CO_3$, $Mn(NO_3)_2$, and $Ce(NO_3)_3$ were used and impregnated on a coal using an evaporator. The gasification experiments were carried out with the low rank coal loaded with 5 wt% catalyst at the temperature range from $700{\sim}900^{\circ}C$ and atmospheric pressure with the $N_2-CO_2$ reactant gas mixture. The catalytic effect on the gasification rate of the low rank coal with $CO_2$ was determined by the thermogravimetric analyzer. It was observed that the low rank coal reached the complete carbon conversion regardless of the kinds of catalysts at $900^{\circ}C$ from the results of TGA. The catalytic activity was ranked as 5 wt% $K_2CO_3$ > 5 wt% $Mn(NO_3)_2$ > 5 wt% $Ce(NO_3)_3$ > Non-catalyst at $900^{\circ}C$. The gasification rate increased with increasing the temperature. The activation energy of the catalytic gasification with 5 wt% $K_2CO_3$ was 119.0 kJ/mol, which was the lowest among all catalysts.

Kinetic Studies of the Catalytic Low Rank Coal Gasification under CO2 Atmosphere (CO2분위기하에서 저급석탄 촉매가스화 반응 특성 연구)

  • Park, Chan Young;Park, Ji Yun;Lee, Si Hoon;Rhu, Ji Ho;Han, Moon Hee;Rhee, Young Woo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1086-1092
    • /
    • 2012
  • In this study, kinetic studies and analysis of the produced syngas were conducted for low rank coal gasification under $CO_2$ atmosphere. 6 coals were analyzed to measure amount of sulfur and ash by proximate and ultimate analyses. And then they were analyzed to select suitable sample by using Thermogravimetric analyzer (TGA). Selected coal sample Samhwa was mixed with catalysts. Mixed samples with catalysts were used to get activation energy under $CO_2$ atmosphere by using Kissinger's method and shrinking core model (SCM). Also, analysis of produced syngas was performed by Gas Chromatography (GC). In this experiment, activation of the $K_2CO_3$ was the best performance, and result of the analysis of the syngas showed similar trend with result of the activation energy.

석탄 촤-수증기 가스화반응에서 알카리 금속염과 전이금속염 혼합물의 촉매활성

  • 이운재;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.05a
    • /
    • pp.9-14
    • /
    • 1994
  • 알카리금속염 (K$_2$CO$_3$, $K_2$SO$_4$). 알카리 토금속염 (Ba(NO$_3$)$_2$), 철족금속염(Ni(NO$_3$)$_2$, FeSO$_4$) 으로 이루어진 여러가지 혼합물들이 반응온도 700~85$0^{\circ}C$ 하의 촤-수증기 가스화반응에서 나타내는 촉매활성을 열천칭 반응기를 사용하여 측정하였다. 비촉매 가스화반응에서 초기반응성은 수증기 분압에 비례하였다. 촉매 가스화반응에서 단일염 촉매의 경우 $K_2$CO$_3$ 가 가장 큰 활성을 나타내었으며, 다른 염들은 낮은 활성을 보였다. 혼합염의 경우 $K_2$SO$_4$에 철족염을 부가함에 따라 반응속도가 향상되었으며, $K_2$SO$_4$+Ni(NO$_3$)$_2$가 가장 큰 촉매활성을 나타내었다. $K_2$SO$_4$와 Ni(NO$_3$)$_2$ 의 촉매 활성은 담지량에 따라 증가하며, 석탄의 등급에 따라 감소하였다. $K_2$SO$_4$와 Ni(NO$_3$)$_2$의 혼합비는 같은 몰비로 혼합하였을때 가장 큰 활성을 나타내었다.

  • PDF