• Title/Summary/Keyword: 석청

Search Result 27, Processing Time 0.022 seconds

Comparison of Pigments and Estimation of Production Period in Old and New Celestial Charts Folding Screens (신구법천문도 채색 안료 비교 및 제작시기 추정)

  • Oh, Joon Suk;Hwang, Min Young;Yamato, Asuka;Arai, Kei;Lee, Sae Rom
    • Journal of Conservation Science
    • /
    • v.36 no.5
    • /
    • pp.351-367
    • /
    • 2020
  • The pigments of three old and new celestial charts folding screens(『Celestial Chart(Folding Screen)』 and 『Old and New Celestial Charts, Eight-Panel Folding Screen』 of National Folk Museum of Korea and 『Koudou-Nanboku-Ryousouseizu』 of National Diet Library of Japan) were analyzed to estimate their dating. It was estimated that the 『Celestial Charts(Folding Screen)』 was painted using traditional pigments from the Joseon dynasty such as azurite, indigo lake, malachite, atacamite, vermilion, iron oxide, cochineal, gamboge, orpiment, lead white, talc and soot. The green and blue colors of the 『Old and New Celestial Charts, Eight-Panel Folding Screen』 and 『Koudou-Nanboku-Ryousouseizu』 were painted using artificial inorganic pigments such as emerald green and ultramarine blue. These pigments were imported from Europe post the mid-19th century. In the 『Old and New Celestial Chart, Eight-Panel Folding Screen』, only artificial inorganic pigments were used for green and blue colors. However in the 『Koudou-Nanboku-Ryousouseizu』, emerald green and atacamite in green color, and ultramarine blue and indigo lake in blue color were used together. Based on both the results of pigment analysis and the study of star charts and inscriptions, the 『Celestial Charts(Folding Screen)』 was painted post mid-18th century. The 『Koudou-Nanboku-Ryousouseizu』 and 『Old and New Celestial Charts, Eight-Panel Folding Screen』 were painted after green and blue artificial pigments were imported in the mid-19th century. The 『Koudou-Nanboku-Ryousouseizu』 in which both traditional and western artificial pigments were used, can be dated earlier than the 『Old and New Celestial Chart, Eight-Panel Folding Screen』.

Nondestructive Analysis of Portrait of Master Gowun at Wunamyeongdang Shrine for Investigation of the Original Images and Pigments (비파괴 분석을 통한 최치원 진영(崔致遠 眞影)의 도상 및 채색재료 연구)

  • Choi, Hyunwook;Gwak, Hongin;Shin, Yongbi
    • Conservation Science in Museum
    • /
    • v.24
    • /
    • pp.81-98
    • /
    • 2020
  • This paper presents the results of a comprehensive nondestructive analysis of Portrait of Master Gowun at Wunamyeongdang Shrine (Hereafter, Portrait of Choe Chiwon), Tangible Cultural Heritage No. 187 of Gyeongsangnam-do, including the underlying images drawn at the time of its production and the pigments present. The analysis revealed that the portrait was produced in 1793 at Ssanggyesa Temple in Hadong, Gyeongsangnam-do, which makes it the earliest known example among the extant portraits of Choe Chiwon. X-ray examination found images of a half-length boy monk and a full-length boy monk on either side of the portrait, which had been painted over and became invisible to the naked eye. XRF analysis of the pigments indicated that white lead was used for white, cinnabar and red lead for red, malachite for green, azurite for blue, and gold for gold. It was revealed that the overpainted boy monks were colored using the same pigments as those applied in the portrait of the main figure. It is hoped that the analysis of the pigments used for the boy monks can provide basic materials for research on the production of copied portraits and local Buddhist paintings. Also, additional research drawing upon other fields of study is required to examine the details of the inscription of the portrait.

A Study on Replica Restoration Methods through Scientific Analysis of Seongju Lee Family's Portraits (성주 이씨가(家) 초상화의 과학적 분석을 통한 모사복원방안 연구)

  • Jeong, Ji-Youn;Lee, Jang-Jon;Han, Min-su
    • Journal of Conservation Science
    • /
    • v.38 no.3
    • /
    • pp.201-216
    • /
    • 2022
  • Materials and techniques used for two portraits (Jo-nyeon Lee and S ung-in Lee) of the Lee family from Seongju enshrined in Seongsan temple were scientifically analyzed, and based on the data, an optimal replica restoration method was designed. According to the expression technique investigation, both portraits were expressed mainly in line drawing, but there were differences in shoes, pupils, the color expression of flesh, overpainting, and traces of reinforcement. Pigment analysis revealed that a mixture of cinnabar and minium, organic pigment, azurite, malachite, lead white, and yellow pigment were used in common. In the case of Sung-in Lee's portrait, seokganju and atacamite were also used. In addition, comparison with the contemporaneous portraits of gentry showed that the portrait style at the time was found in the two portraits, but the singularity was modified differently there. Based on the scientific analysis, it was decided to replicate the old color restoration for Jo-nyeon Lee's portrait while for Sung-in Lee's portrait, it was decided to replicate the phenomenon. Detailed coloring techniques were presented by supplementing the expression techniques that are difficult to confirm visually using scientific data. In addition, by measuring the chromaticity of representative positions in the portrait for each color and presenting the color reference value calculated as the average value, the current color of the artifact can be replicated and restored based on the objective data as much as possible.

A Study on Decanting of Old Wine : Focused on Fortified Wine (올드 와인의 디캔팅 연구 : 강화 와인을 중심으로)

  • Kim, Dong-Joon;Choo, Kou-Jin;Baek, Ju-Hyeon
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.4
    • /
    • pp.39-51
    • /
    • 2019
  • This study was tested on Ratafia Champagne Trouillard 1947 of old fortified wine and analyzed differences from existing wines. Old fortified wine in Champagne, France and blanding is Pinot Noir, Chardonnay and Pinot Meunier. Alcohol level is 18% and test date is Feb. 15-21, 2019(six days of decanting period/15 p.m. on the last tasting day). Tester is composed of one FICB grand commander one KOV Finland commander. The wine opening was tested for two blades after wire removal and the decanting time was applied to the calculation formula of 2019(this year)-1947(vintage year)/12=6 days set in this study. Aroma smelled like cherries, fruits, soy sauce and licorice and bouquet was identified in five stages. The first stage was presented with the smell of pot, the second stage was light coffee, the third stage smell of fruit and flowers, the fourth stage smell of wild honey and the fifth stage smell of refined brandy. Then, the test was analyzed in seven stages. This study has the following implications: First, the new concept of old wine was applied to fortified wine. Specific computational formulas for the decanting period were derived. The decanting presented five steps of aromas and bouquet. Wine testing has been expanded from the previous five to seven levels. A new taste of Champagne old fortified wine was analyzed.

The Effects of Anoxic Treatments on Color and Mechanical Property in Fabrics, Natural Dyed Fabrics, Papers, Natural Dyed Papers and Paints (저산소 농도 살충처리가 직물, 염색 직물, 종이, 염색지 및 채색편의 색상 및 기계적 성질에 미치는 영향)

  • Oh, Joon Suk;Choi, Jung Eun;Noh, Soo Jung;Eum, Sang Wook
    • Journal of Conservation Science
    • /
    • v.30 no.2
    • /
    • pp.219-234
    • /
    • 2014
  • Fabrics, natural dyed fabrics, papers, natural dyed papers and paints were examined effects of colors and mechanical properties for materials of museum collections under anoxic treatment. Anoxic conditions using nitrogen and argon were oxygen concentration 0.01%, temperature($20^{\circ}C$, $25^{\circ}C$, $30^{\circ}C$), 50% RH and exposure time 30 days. Examined fabrics were raw silk fabric, UV irradiated raw silk fabric, degummed silk fabric, UV irradiated degummed silk fabric, cotton fabric, and UV irradiated cotton fabric. Natural dyed silk and cotton fabrics were dyed with fresh indigo, indigo, safflower, gromwell, madder sappanwood, amur cork tree, turmeric, gardenia, barberry root, pagoda tree flower, cochineal, lac, alnus japonica, gallnut, chestnut shell, and combination(indigo and safflower, indigo and amur cork tree, indigo and pagoda tree flower, indigo and sappanwood). Papers were Korean papers(mulberry paper, mulberry(70%) and rice straw(30%) mixed paper), Japanese paper(gampi paper), cotton paper, refined linen paper, cotton, linen & manila mixed fibre furnish, copy paper, news print, and alum sized mulberry paper. Natural dyed papers were dyed with indigo, sappanwood, madder, safflower, gardenia, amur cork tree, and pagoda tree flower. Paints were painted on alum-sized papers and silk fabrics using glue and pigments(azurite, malachite, cinnabar, vermilion, orpiment, gamboge, red lead, haematite, iron oxide red, indigo(lake), lac, cochineal, safflower, madder root lake, celadonite, smalt, ultramarine blue, lapis lazuli, prussian blue, kaolin, lead white, oyster-shell white, and clam-shell white). The color differences(${\Delta}E^*$) of all examined materials were below 1.5 or lowered than control samples after anoxic treatment. The variations of tenacity of yarns of fabrics and natural dyed fabrics after anoxic treatment were within that of standard silk and cotton fabrics. Gases(nitrogen and argon) and temperatures of anoxic treatment did not also affected color differences and variations of tenacity of materials.

Analysis of the background fabric and coloring of The Paintings of a 60th Wedding Anniversary Ceremony in the possession of the National Museum of Korea (국립중앙박물관 소장 <회혼례도첩>의 바탕직물과 채색 분석)

  • Park Seungwon;Shin Yongbi;Park Jinho;Lee Sujin;Park Woonji;Lee Huisung
    • Conservation Science in Museum
    • /
    • v.29
    • /
    • pp.1-32
    • /
    • 2023
  • The Paintings of a 60th Wedding Anniversary Ceremony Created by an Unknown Painter (Deoksu 6375), housed by the National Museum of Korea, is a five-panel painting book depicting scenes from a wedding ceremony. Hoehonrye is a type of repeated wedding ceremony to commemorate a couple's 60th wedding anniversary with congratulations from the community. The paintings of the book record five scenes from the wedding: jeoninrye, a ceremony where the groom brings a wooden wild goose to the bride's house; gyoberye, the groom and the bride bowing to each other; heosurye, pouring liquor to toast to the couple's longevity; jeopbin, offering tea to guests; and a banquet to celebrates the couple's 60th wedding anniversary. The book describes figures, buildings and a variety of items in detail with delicate brushstrokes. The techniques were examined using microscopy, infrared, and X-ray irradiation and hyperspectral imaging analysis. The invisible parts were examined to identify the rough sketch and distinguish pigments and dyes used for each color. The components of the pigments were determined by X-ray fluorescence analysis, while the dyes were identified by UV-vis spectrometry. Microscope observation revealed that the fabric used for the paintings was raw silk thread with almost no fiber twist, and plain silk fabric. Hyperspectral imaging analysis, X-ray fluorescence analysis, and UV-vis spectrometry confirmed that the white pigment was white lead and the black was chinese ink. The red pigments were using red clay, cinnabar, and a mixture of cinnabar and minium. Brown was made using red clay and organic dyes, and yellow using gamboge. Green was identified as indigo, malachite, chrome green, barium sulfide, and blue as azurite, smalt, and indigo. The purple dye was estimated as a mixture of indigo and cochineal, and gold parts were used gold powder. Hyperspectral images were distinguished parts damaged and conservation treatment area.

The Effect of the Base Layer on the Detection of Lines in Painted Cultural Heritage Using Infrared Photography (적외선 촬영법을 이용한 채색문화유산의 밑선 검출에 바탕층이 미치는 영향)

  • KWON Seoyun;JANG Yujin;LEE Hanhyoung;LEE Sanghyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.2
    • /
    • pp.102-115
    • /
    • 2024
  • Painted Cultural heritage uses various materials such as paper, silk, wood, soil, and lime as a base layer to draw on using ink sticks and express lines or colors using various colorants. The importance of underdrawings is emphasized when it comes to replication and preservation, as they can reveal the original drawing. Investigations using infrared have been extensively conducted to detect underdrawings. However, there has been a paucity of research on the influence of underdrawing detection according to the base layer. In this study, the effect of the base layer materials on underdrawing detection in painted cultural heritage was confirmed using an infrared camera and hyperspectral camera (900 to 1700 nm). The study samples marked '檢' with ink below the color layer (cinnabar, orpiment, malachite, azurite, white lead, and red lead) by the base layer materials: Paper (Dakji, indigo/Dakji), silk (silk, silk/white lead), wood (celadonite/wood), soil (celadonite/soil), and lime. The difference in the effect on underdrawing detection was minimal for paper and silk, and no significant differences were found between Dakji and indigo/Dakji, or between silk and silk/white lead. However, we found that celadonite/wood, celadonite/soil, and lime have a significant impact on underdrawing detection. In particular, for wood and soil painted with celadonite, underdrawings were not detected for all six color layers. In the case of lime, it was found that all color layers except malachite had a more positive effect on underdrawing detection. The findings of this study will aid in selecting the appropriate method for underdrawing analysis in the restoration of painted cultural heritage.