• Title/Summary/Keyword: 서미스터

Search Result 87, Processing Time 0.022 seconds

Fabrication and characteristics of NTC thermistor for low temperature sintering (저온 소결용 NTC 서미스터의 제조 및 특성)

  • Koo, Bon Keup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.28-37
    • /
    • 2018
  • In order to study the NTC thermistor that can be fired at low temperature, the influence of the lead free glass frit and $RuO_2$ addition on the electrical properties of the NTC thermistor of $Mn_{1.85}Ni_{0.25}Co_{0.9}O_4$ basic composition was studied. The sintering characteristics of the specimen sintered at $1000^{\circ}C$ with 10 wt% frit added to the basic NTC composition were similar to those of the specimen sintered at $1200^{\circ}C$ without frit. However, as the amount of frit increased, the electrical resistivity and B constant were increased. In order to reduce the resistance, NTC thermistor was prepared by adding 0, 2, and 5 wt% of $RuO_2$ to the composition containing 10 wt% of frit and sintered at $1000{\sim}1200^{\circ}C$, and sintering and electrical properties were measured. The electrical resistivity and the B constant tended to decrease with increasing $RuO_2$ content. However, the resistivity was the lowest at sintering temperature of $1000^{\circ}C$ and the resistance increased with increasing sintering temperature after 5 wt% $RuO_2$ addition. The NTC thermistor sintered at $1000^{\circ}C$ with 10 wt% frit and 5 wt% $RuO_2$ in the composition of NTC showed similar electrical properties and sintering characteristics when sintered at $1200^{\circ}C$ without added frit.

Effect of lead-free frit and RuO2 on the electrical properties of thick film NTC thermistors for low temperature co-firing (저온 동시 소성용 후막 NTC 서미스터의 전기적 특성에 미치는 무연계 프릿트 및 RuO2의 영향)

  • Koo, Bon Keup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.5
    • /
    • pp.218-227
    • /
    • 2021
  • A thick film NTC thermistor for low temperature co-firing was manufactured by printing and sintering a paste prepared using NTC powder of Mn1.5Ni0.4Co0.9Cu0.4O4 composition, lead free frit, and RuO2 on a 96 % alumina substrate. The effect of frit and RuO2 on the electrical properties of thick film NTC thermistor was studied. The resistance of the thick film NTC thermistor was higher than that of the bulk phase sintered at the same temperature, but it was found that the negative resistance temperature characteristic appeared more clearly and linearly in the resistance - temperature characteristic. On the other hand, the area resistance decreased as the sintering temperature increased, and the area resistance increased as the amount of frit added increased. The B constant of the thick film NTC thermistor was 3000 K or higher. Among them, it was found that the B constant of the thick film NTC thermistor made of paste with 5 wt% of frit added and sintered at 900℃ showed the highest B constant. Also, it can be seen that the area resistance decreased with the addition of RuO2, and the change in the area resistance decrease of the thick film NTC thermistor obtained by sintering the paste containing 5 wt% of RuO2 at 900℃ is the most obvious.

Design of Simple Direct Comparison Measurement System from 10 MHz to 1 GHz for Thermistor Mounts Calibration (서미스터 마운트 교정을 위한 10 MHz에서 1 GHz 주파수 대역의 단순 직접 비교 측정시스템 설계)

  • Cha, Yun-Bae;Jang, Young-Guen;Kim, Boo-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.405-412
    • /
    • 2020
  • The thermistor mount is used for precise RF power measurement because the calibration factor is constant according to the change of power. The calibration factor of the standard mount can be measured with an uncertainty less than 0.5 % from the 10 MHz to 1 GHz by direct comparison with the transfer standard using the DC substitution method. Recently, as the supply of precision power meter based on DC substitution method allows simple and fast measurement, a simple direct comparison measurement system with the same level uncertainty was designed and the minimum required specifications of components through analysis of mismatch error was proposed. The uncertainty was evaluated for system validation, and the results show that uncertainties have been well maintained within 0.5 % in the measurement frequencies.

Development of Breath Flow Sensor with Thermistor (서미스터를 이용한 호흡유량 바이오센서)

  • Song, Chan-Yi;Bae, Hwang;Chang, Keun-Shik;Kim, Sa-Ji
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.468-471
    • /
    • 2008
  • We have developed a breath flow sensor that is cheap, robust and has reasonable accuracy. It based on using two thermistors implanted in a breath nozzle, apart by a small but known distance. The sensors detect the small time interval when the breath tidal wave passes by. Therefore the speed of the breath gas can be determined in a given pipe of known diameter. The sensors are calibrated for a few parameters and their accuracy has been estimated.

  • PDF

Properties of Spinel Ferrites for NTC Thermistor (NTC 서미스터용 스페넬 페라이트의 특성)

  • 오영우;허정섭;김현식;이승관
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.546-551
    • /
    • 1998
  • $Mn{1-X}Fe{2+X}O_4, Mg_{1-X}Fe_{2+X}O_4$ (x=0.0, 0.025, 0.1, 0.2) for negative temperature coefficient (NTC) thermistor was prepared by calcination at $800^{\circ}C$ and sintering at form 1100 to $1250^{\circ}C$ with $50^{\circ}C$ intervals. The best linear property was obtained in the Mn-based sample sintered at $1200^{\circ}C$ with x=0.0 composition. Temperature coefficient of resistance, $\alpha$, was $-5.6%/^{\circ}C$ in the Mn-based sample, $-5.2%/^{\circ}C$ in the MM-based sample, and $-1.6%/^{\circ}C$ in the Mg-based sample. thermistor parameter, B, was in the range of 2665~7780 K. The results show the possibility that Mn-Ni-Co based thermistor could be substituted by the composition used in this study.

  • PDF

Fabrication of SMD Type PTC Thermistor with Multilayer Structure

  • Kim, Yong-Hyuk;Lee, Duck-Cuool
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.76-82
    • /
    • 2000
  • PTC thermistors with multilayer structure were fabricated by internal electrode bonding technique in order to realize low resistance. MLPTC (Multilayer Positive Temperature Coefficient) possess various features, such as small size, low resistivity and large current. We describe the effect of additives on the PTC characteristics, voltage - current characteristics, temperature dependence of resistance and complex impedance spectra as a function of frequency range 100 Hz to 13MHz to determine grain boundary resistance. It was found that MLPTC thermistor has both highly nonlinear effects of temperature dependent resistance and voltage dependent current behaviors, which act as passive element with self-repair mechanisms. Decrease of room temperature resistance with increasing the number of layers was demonstrated to be a grain boundary effect. Switching characteristics of current were caused by heat capacity of PTC thermistor with multilayer structure. Switching times are lengthened by increasing the number of layers.

  • PDF

Investigation on the Vibrating Wire Strain Gauges for the Evaluation of Pipeline Safety in Extreme Cold Region (극한지 파이프라인 안정성 평가를 위한 진동현식 변형률 게이지 연구)

  • Kim, Hak Joon
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.583-591
    • /
    • 2016
  • Vibrating wire (VW) strain gauges are widely used for the evaluation of pipeline safety in extreme cold region. The development of VW strain gauges for the low temperature environment is necessary because of the high cost of gauges sold in developed countries. Thermistors embedded in the regular VW strain gauges and PT 100 sensors embedded in the gauges specially manufactured for this study have gone through credibility tests for temperature measurements. The use of PT 100 is recommended at low temperature environments because thermistors have low credibility at temperatures below $-15^{\circ}C$. Strain measurements using regular VW strain gauges also show low accuracies as temperature goes down. VW strain gauges manufactured using inconel give high credibility of strain measurements at low temperatures. More reliable VW strain gauges for the low temperature environment will be developed in the near future.