• Title/Summary/Keyword: 서로소인 경로

Search Result 12, Processing Time 0.017 seconds

Generalization of Disjoint Path Covers (서로소인 경로 커버의 일반화)

  • Park, Jung-Heum
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06b
    • /
    • pp.487-492
    • /
    • 2010
  • 그래프에서 k-서로소인 경로 커버는 정점 집합을 커버하면서 정점이 서로소인 .개의 경로들의 집합으로 정의하고, 이때 각 경로는 주어진 소스와 싱크를 잇는다. 각 소스와 싱크에 요구(demand)라고 부르는 양의 정수가 주어질 때, 요구가 d인 각 소스나 싱크가 d개의 경로에 포함되는 일반-요구 k-서로소인 경로 커버(general-demand k-disjoint path cover)를 정의할 수 있다. 이것은 일대일, 일대다, 그리고 비쌍형 다대다 서로소인 경로 커버를 일반화한 것이다. 이 논문에서는 일반-요구 k-서로소인 경로 커버 문제가 비쌍형 k-서로소인 경로 커버 문제로 변환될 수 있음을 보인다. 더구나 소스가 하나인 경우를 단일-소스 k-서로소인 경로 커버(single-source k-disjoint path cover)라고 부르는데, 이것은 일대다 k-서로소인 경로 커버 문제로 변환된다.

  • PDF

One-to-One Disjoint Path Covers in Recursive Circulants (재귀원형군의 일대일 서로소인 경로 커버)

  • 박정흠
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.12
    • /
    • pp.691-698
    • /
    • 2003
  • In this paper, we propose a problem, called one-to-one disjoint path cover problem, whether or not there exist k disjoint paths joining a pair of vertices which pass through all the vertices other than the two exactly once. A graph which for an arbitrary k, has a one-to-one disjoint path cover between an arbitrary pair of vertices has a hamiltonian property stronger than hamiltonian-connectedness. We investigate this problem on recursive circulants and prove that for an arbitrary k $k(1{\leq}k{\leq}m)$$ G(2^m,4)$,$m{\geq}3$, has a one-to-one disjoint path cover consisting of k paths between an arbitrary pair of vortices.

Conditions for Disjoint Path Coverability in Proper Interval Graphs (진구간 그래프의 서로소인 경로 커버에 대한 조건)

  • Park, Jung-Heum
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.10
    • /
    • pp.539-554
    • /
    • 2007
  • In this Paper, we investigate conditions for proper interval graphs to have k-disjoint path covers of three types each: one-to-one, one-to-many, and many-to-many. It was proved that for $k{\geq}2$, a proper interval graph is one-to-one k-disjoint path coverable if and only if the graph is k-connected, and is one-to-many k-disjoint path coverable if and only if the graph is k+1-connected. For $k{\geq}3$, a Proper interval graph is (paired) many-to-many k-disjoint path coverable if and only if the graph is 2k-1-connected.

Paired Many-to-Many Disjoint Path Covers in Recursive Circulants and Tori (재귀원형군과 토러스에서 쌍형 다대다 서로소인 경로 커버)

  • Kim, Eu-Sang;Park, Jung-Heum
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.1
    • /
    • pp.40-51
    • /
    • 2009
  • A paired many-to-many k-disjoint path cover (paired k-DPC) of a graph G is a set of k disjoint paths joining k distinct source-sink pairs in which each vertex of G is covered by a path. In this paper, we investigate disjoint path covers in recursive circulants G($cd^m$,d) with $d{\geq}3$ and tori, and show that provided the number of faulty elements (vertices and/or edges) is f or less, every nonbipartite recursive circulant and torus of degree $\delta$ has a paired k-DPC for any f and $k{\geq}1$ with $f+2k{\leq}{\delta}-1$.

Unpaired Many-to-Many Disjoint Path Covers in Hypercube-Like Interconnection Networks (하이퍼큐브형 상호연결망의 비쌍형 다대다 서로소인 경로 커버)

  • Park, Jung-Heum
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.10
    • /
    • pp.789-796
    • /
    • 2006
  • An unpaired many-to-many k-disjoint nth cover (k-DPC) of a graph G is a set of k disjoint paths joining k distinct sources and sinks in which each vertex of G is covered by a path. Here, a source can be freely matched to a sink. In this paper, we investigate unpaired many-to-many DPC's in a subclass of hpercube-like interconnection networks, called restricted HL-graphs, and show that every n-dimensional restricted HL-graph, $(m{\geq}3)$, with f or less faulty elements (vertices and/or edges) has an unpaired many-to-many k-DPC for any $f{\geq}0\;and\;k{\geq}1\;with\;f+k{\leq}m-2$.

Many-to-Many Disjoint Path Covers in Double Loop Networks (이중 루프 네트워크의 다대다 서로소인 경로 커버)

  • Park Jung-Heum
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.8
    • /
    • pp.426-431
    • /
    • 2005
  • A many-to-many k-disjoint path cover (k-DPC) of a graph G is a set of k disjoint paths joining k distinct source-sink pairs in which each vertex of G is covered by a path. In this paper, we investigate many-to-many 2-DPC in a double loop network G(mn;1,m), and show that every nonbipartite G(mn;1,m), $m{\geq}3$, has 2-DPC joining any two source-sink pairs of vertices and that every bipartite G(mn;1,m) has 2-DPC joining any two source-sink pairs of black-white vertices and joining any Pairs of black-black and white-white vertices. G(mn;l,m) is bipartite if and only if n is odd and n is even.

Topological Properties of Recursive Circulants : Disjoint Paths (재귀원형군의 위상 특성 : 서로소인 경로)

  • Park, Jeong-Heum;Jwa, Gyeong-Ryong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.1009-1023
    • /
    • 1999
  • 이 논문은 재귀원형군 G(2^m , 2^k ) 그래프 이론적 관점에서 고찰하고 정점이 서로소인 경로에 관한 위상 특성을 제시한다. 재귀원형군은 1 에서 제안된 다중 컴퓨터의 연결망 구조이다. 재귀원형군 {{{{G(2^m , 2^k )의 서로 다른 두 노드 v와 w를 잇는 연결도 kappa(G)개의 서로소인 경로의 길이가 두 노드 사이의 거리d(v,w)나 혹은 G(2^m , 2^k )의 지름 \dia(G)에 비해서 얼마나 늘어나는지를 고려한다. 서로소인 경로를 재귀적으로 설계하는데, 그 길이는 k ge2일 때 d(v,w)+2^k-1과 \dia(G)+2^k-1의 최솟값 이하이고, k=1일 때 d(v,w)+3과 \dia(G)\+2의 최솟값 이하이다. 이 연구는 (2^m , 2^k )의 고장 감내 라우팅, 고장 지름이나 persistence의 분석에 이용할 수 있다.Abstract In this paper, we investigate recursive circulant G(2^m , 2^k ) from the graph theory point of view and present topological properties concerned with node-disjoint paths. Recursive circulant is an interconnection structure for multicomputer networks proposed in 1 . We consider the length increments of {{{{kappa(G)disjoint paths joining arbitrary two nodes v and win G(2^m , 2^k )compared with distance d(v,w)between the two nodes and diameter {{{{\dia(G)of G(2^m , 2^k ), where kappa(G)is the connectivity of G(2^m , 2^k ). We recursively construct disjoint paths of length less than or equal to the minimum of {{{{d(v,w)+2^k-1and \dia(G)+2^k-1for kge2 and the minimum of d(v,w)+3 and \dia(G)+2for k=1. This work can be applied to fault-tolerant routing and analysis of fault diameter and persistence of G(2^m , 2^k )

Fault Diameter and Mutually Disjoint Paths in Multidimensional Torus Networks (다차원 토러스 네트워크의 고장지름과 서로소인 경로들)

  • Kim, Hee-Chul;Im, Do-Bin;Park, Jung-Heum
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.176-186
    • /
    • 2007
  • An interconnection network can be represented as a graph where a vertex corresponds to a node and an edge corresponds to a link. The diameter of an interconnection network is the maximum length of the shortest paths between all pairs of vertices. The fault diameter of an interconnection network G is the maximum length of the shortest paths between all two fault-free vertices when there are $_k(G)-1$ or less faulty vertices, where $_k(G)$ is the connectivity of G. The fault diameter of an R-regular graph G with diameter of 3 or more and connectivity ${\tau}$ is at least diam(G)+1 where diam(G) is the diameter of G. We show that the fault diameter of a 2-dimensional $m{\times}n$ torus with $m,n{\geq}3$ is max(m,n) if m=3 or n=3; otherwise, the fault diameter is equal to its diameter plus 1. We also show that in $d({\geq}3)$-dimensional $k_1{\times}k_2{\times}{\cdots}{\times}k_d$ torus with each $k_i{\geq}3$, there are 2d mutually disjoint paths joining any two vertices such that the lengths of all these paths are at most diameter+1. The paths joining two vertices u and v are called to be mutually disjoint if the common vertices on these paths are u and v. Using these mutually disjoint paths, we show that the fault diameter of $d({\geq}3)$-dimensional $k_1{\times}k_2{\times}{\cdots}{\times}k_d$ totus with each $k_i{\geq}3$ is equal to its diameter plus 1.

Many-to-Many Disjoint Path Covers in Two-Dimensional Bipartite Tori with a Single Fault (하나의 고장을 가진 2-차원 이분 토러스에서 다대다 서로소인 경로 커버)

  • Kim, Ho-Dong;Park, Jung-Heum
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.492-495
    • /
    • 2011
  • 그래프 G의 쌍형 다대다 k-서로소민 경로 커버 (k-DPC)는 k개의 서로 다른 소스 정점과 싱크 정점 쌍을 연결하며 그래프에 있는 모든 정점을 지나는 k개의 서로소인 경로 집합을 말한다. 2-차원 $m{\times}n$ 토러스는 길이가 각각 m과 n인 두 사이클 $C_m$$C_n$의 곱으로 정의되는 그래프이다. 이 논문에서는 고장 정접이나 에지가 하나인 $m{\times}n$ 이분 토러스(짝수 m,n ${\geq}$4)에는, 정점 고장이 있고 소스나 싱크 중에 고장 정점과 같은 색을 가진 정점이 오직 하나 존재하거나 혹은 정점 고장이 없고 에지 고장이 하나 존재하면서 둘은 흰색 정점이고 둘은 검정색 정점이면 항상 두 소스-싱크 쌍을 잇는 쌍형 다대다 2-DPC가 존재 힘을 보인다.