• Title/Summary/Keyword: 섀시

Search Result 42, Processing Time 0.022 seconds

Automotive Seat Vibration Control with a Nonlinear Seat Cushion Model (비선형 시트 쿠션 모델을 고려한 자동차 시트의 진동 제어)

  • Mo, Chang-Ki
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.261-266
    • /
    • 2003
  • 이 논문에서는 반능동 진동 흡수기를 통합 시트/섀시 현가 장치에 확대, 적용하여 그 성능을 조사하였다. 통함 현가시스템의 성능분석을 위해 집중 인체질량과 함께 실험적으로 입증된 한 비선형 시트 쿠션 모델을 도입하였다. 또한 3 자유도 시트/섀시 현가시스템의 효과적인 진동제어를 위해 리아푸노브 바이스테이트 제어법칙을 사용하였다. 시뮬레이션결과 반능동 통합 현가장치는 시트 쿠션 모델과 관계없이 운전자의 승차감과 관련 있는 시트의 절대가속도 크기와 시트쿠션의 시트 트랙에 대한 상대변위를 상당히 감소시킬 수 있음을 알 수 있었다. 그러나, 주로 사용되어온 선형 쿠션 모델을 사용한 경우보다 비선형쿠션 모델을 사용한 경우의 제진성능이 약간 저조함을 알 수 있었다. 따라서, 자동차 시트 설계시 성능분석을 위해서는 실제의(비선형의) 시트 쿠션 특성을 적용해야 함을 알 수 있다.

  • PDF

Unified Chassis Control for Improvement of Vehicle Lateral Stability (차량 횡방향 안정성 향상을 위한 통합섀시 제어)

  • Cho, Wan-Ki;Yi, Kyoung-Su;Yoon, Jang-Yeol
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1126-1131
    • /
    • 2007
  • This paper presents unified chassis control (UCC) to improve the vehicle lateral stability. The unified chassis control implies combined control of active front steering (AFS), electronic stability control (ESC) and continuous damping control (CDC). A direct yaw moment controller based on a 2-D bicycle model is designed by using sliding mode control law. A direct roll moment controller based on a 2-D roll model is designed. The computed direct yaw moment and the direct roll moment are generated by AFS, ESP and CDC control modules respectively. A control authority of the AFS and the ESC is determined by tire slip angle. Computer simulation is conducted to evaluate the proposed integrated chassis controller by using the Matlab, simulink and the validated vehicle simulator. From the simulation results, it is shown that the proposed unified chassis control can provide with improved performance over the modular chassis control.

  • PDF

Unified Chassis Control to Prevent Vehicle Rollover (차량전복 방지를 위한 통합섀시제어)

  • Yoon, Jang-Yeol;Yi, Kyoung-Su;Cho, Wan-Ki;Kim, Dong-Shin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1132-1137
    • /
    • 2007
  • This paper describes a Unified Chassis Control (UCC) strategy to prevent vehicle rollover by integrating individual modular chassis control systems such as Electronic Stability Control (ESC) and Continuous Damping Control (CDC). The UCC threshold is determined from a rollover index computed by estimated roll angle, roll rate and measured lateral acceleration. A direct yaw moment control method is used to design the ESC based on a 2-D bicycle model. Similarly, the CDC is designed based on a 2-D roll model using a direct roll moment control method. The performance of the proposed UCC scheme is investigated and compared to that of modular chassis controllers through computer simulations using a validated vehicle simulator. It is shown that the proposed the UCC can lead to improvements in vehicle stability and efficient actuation of chassis control systems.

  • PDF

An Experimental Study on Automobile Tire Road Noise for Design of Automobile Chassis (자동차 섀시 설계를 위한 자동차 타이어 도로소음에 관한 실험적 연구)

  • Kim, Byoung-sam
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.375-381
    • /
    • 2005
  • The purpose of this study is to obtain a foundation data for chassis design and road noise reduction of automobiles. Using the combination of the automobile, radial tires and instrumentation equipment, experimental investigation were carried out to examine the characteristics of the structural vibration of tire as the key to obtaining the effective parameters for reducing road noise. From the results of experimental studies it has been confirmed that the existence of important frequency ranges, which were attributable to the suspension and chassis system. The tire, axle and chassis natural frequency of automobile govern the road noise. Results that material property of tire and experimental condition are parameter for shifting of tire natural frequency, which enables a designer of an automobile to foresee the influence of the various design factors on the road noise.

Design and Analysis of Kart Chassis Frame for Bending and Torsional Stiffness (굽힘과 비틀림 강성을 갖는 카트 섀시 프레임의 설계와 해석)

  • 장성국;강신하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.226-231
    • /
    • 2003
  • There have been many attempts to make kart chassis domestically to lower the price of complete kart. However nobody made a successful chassis due to the lack of understanding the characteristics of kart chassis frame. In this work, a baseline chassis frame under the bending and torsional load is studied. Design target is that the baseline chassis frame is quite adequate not only for the beginners but also for the beginning racers. Results from the analysis are used as a guide to design or modify the baseline chassis with the goal of proper torsional stiffness. Minimum increase in weight is being forced. As a result, the baseline chassis frame was designed, made, and tested. Based on the design results, complete karts are being manufactured by the small 1 size domestic company and these karts are being sold and run in the market.

Adaptive Variable Weights Tuning in an Integrated Chassis Control for Lateral Stability Enhancement (횡방향 안정성 향상을 위한 통합 섀시 제어의 적응 가변 가중치 조절)

  • Yim, Seongjin;Kim, Wooil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.103-111
    • /
    • 2016
  • This paper presents an adaptive variable weights tuning system for an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) for lateral stability enhancement. After calculating the control yaw moment needed to stabilize a vehicle with a controller design method, it is distributed into the tire forces generated by ESC and AFS using weighted pseudo-inverse-based control allocation (WPCA). On a low friction road, lateral stability can deteriorate due to high vehicle speed. To cope with the problem, adaptive tuning rules on variable weights of the WPCA are proposed. To check the effectiveness of the proposed method, a simulation was performed on the vehicle simulation package, CarSim.

A Development of Effective Educational Simulator for Electronic Control System of Automobile Chassis (섀시 전자제어 시스템의 효과적인 교육을 위한 능동형 시뮬레이터의 개발)

  • Son, Il-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3326-3333
    • /
    • 2012
  • In this paper, an educational simulator of automobile chassis electronic control system was developed. The developed system is composed of three parts, a driving condition control & monitoring system, a chassis electronic system monitoring & analysis system, and a virtual simulator & educational multimedia contents. The driving condition control & monitoring system has a commercial real car simulator, hydraulic equipments for representing driving conditions, and a remote control and monitoring system. In the chassis electronic system monitoring & analysis system, information of various sensors and actuators applied to the system can be monitored by Labview programs. Finally, the suggested virtual simulator and the multimedia with 2D Flash and 3D animations can be used effectively by means of teaching materials.

Optimization of Chassis Frame by Using D-Optimal Response Surface Model (D-Optimal 반응표면모델에 의한 섀시 프레임 최적설치)

  • Lee, Gwang-Gi;Gu, Ja-Gyeom;Lee, Tae-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.894-900
    • /
    • 2000
  • Optimization of chassis frame is performed according to the minimization of eleven responses representing one total frame weight, three natural frequencies and seven strength limits of chassis frame that are analyzed by using each response surface model from D-optimal design of experiments. After each response surface model is constructed form D-optimal design and random orthogonal array, the main effect and sensitivity analyses are successfully carried out by using this approximated regression model and the optimal solutions are obtained by using a nonlinear programming method. The response surface models and the optimization algorithms are used together to obtain the optimal design of chassis frame. The eleven-polynomial response surface models of the thirteen frame members (design factors) are constructed by using D-optimal Design and the multi-disciplinary design optimization is also performed by applying dual response analysis.

Wear Characteristics of Rubber-Seal for Inflow of Dust Particle in Automobile Chassis System PART I : Analysis of Dust Particle for Inflow in Automobile Chassis System (자동차 섀시 시스템에 유입되는 먼지입자에 의한 고무-시일 부품의 마멸특성 PART I : 자동차 섀시 시스템에 유입되는 먼지입자분석)

  • Lee, Young-Ze;Chung, Soon-Oh;Won, Tae-Yeong;Kim, Gi-Hoon;Kim, Dae-Sung
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.120-124
    • /
    • 2009
  • In automobile chassis system, several environmental factors weaken durability of automobile's components. The environmental factors are temperature, humidity, intensity of radiation and dust particle inflow. Especially, dust particle inflow leads to increase in friction and wear of automobile's components. The wear of automobile's component leads to increase in noise and exerts a bad influence on life of components. In this study, dust particles were investigated for study on the influence of dust particle inflow. Dust particles are collected on urban area, rural area and highway in China. The size of dust particle is analyzed using the image plus program, and the element of dust particle is analyzed using the SEM and EDX. The elements of dust particle are $SiO_2$ and $Al_{2}O_{3}$. The other elements(Na, Ca, Cl etc..) are detected on urban area and highway.