• Title/Summary/Keyword: 생태계 모델

Search Result 569, Processing Time 0.044 seconds

A Study on the Development of Phased Big Data Distribution Model Based on Big Data Distribution Ecology (빅데이터 유통 생태계에 기반한 단계별 빅데이터 유통 모델 개발에 관한 연구)

  • Kim, Shinkon;Lee, Sukjun;Kim, Jeonggon
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.95-106
    • /
    • 2016
  • The major thrust of this research focuses on the development of phased big data distribution model based on the big data ecosystem. This model consists of 3 phases. In phase 1, data intermediaries are participated in this model and transaction functions are provided. This system consists of general control systems, registrations, and transaction management systems. In phase 2, trading support systems with data storage, analysis, supply, and customer relation management functions are designed. In phase 3, transaction support systems and linked big data distribution portal systems are developed. Recently, emerging new data distribution models and systems are evolving and substituting for past data management system using new technology and the processes in data science. The proposed model may be referred as criteria for industrial standard establishment for big data distribution and transaction models in the future.

표층혼합층 생태계모델을 이용한 동해 식물플랑크톤의 계절변화

  • ;;Yutaka Isoda
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.127-128
    • /
    • 2003
  • 표층플랑크톤 생물군을 통한 물질순환을 이해하기 위하여 많은 연구자들이 식물플랑크톤, 동물플랑크톤, 영양염 사이의 물질순환을 간단한 미분방정식으로 표현한 생태계모델을 이용해 왔다. 그 중에서도 특히, Fasham(1995)은 북대서양과 북태평양의 식물플랑크톤의 계절변화를 설명하기 위하여 간단하지만 표층 혼합층내 물질순환과정의 본질을 잘 표현한 혼합층모델을 작성했다. (중략)

  • PDF

Analysis of the Ecological Impact of Climate Change using ABMS: A Case Study of Polar Bears and Glacier (기후 변화의 생태계 영향에 대한 ABMS 연구 -빙하감소와 북극곰의 모의실험을 바탕으로-)

  • Cho, Sung-Jin;Na, Yu-Gyung;Lee, Joon-Young;Joh, Chang-Hyeon
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.3
    • /
    • pp.291-303
    • /
    • 2011
  • It has actively advanced to study the impact of climate change on ecosystem. This study addresses ABMS (Agent Based Modeling and Simulation) as a methodology of ecosystem research. ABMS would suggest the possibility of practical use in this sector. This study would investigate how the melting speed of glacier in the arctic influences the extinction period of polar bears. The Polar Bears and Glacier Model in this study is expected to contribute to accurate prediction of the polar bear's extinction period. The suggested ABMS could also be applied to the study of various factors of ecosystem in general.

Estimation of Vegetation Carbon Budget in South Korea using Ecosystem Model and Spatio-temporal Environmental Information (생태계 모형과 시공간 환경정보를 이용한 우리나라 식생 탄소 수지 추정)

  • Yoo, Seong-Jin;Lee, Woo-Kyun;Son, Yo-Whan;Ito, Akihiko
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.145-157
    • /
    • 2012
  • In this study, we simulated a carbon flux model, so called Vegetation Integrated Simulator for Trace gases (VISIT) using Spatio-temporal Environmental Information, to estimate carbon budgets of vegetation ecosystem in South Korea. As results of the simulation, the model estimated that the annual-average gross primary production (GPP), net primary production (NPP) for 10 years were $91.89Tg\;C\;year^{-1}$, and $40.16Tg\;C\;year^{-1}$, respectively. The model also estimated the vegetation ecosystems in South Korea as a net carbon sink, with a value of $3.51Tg\;C\;year^{-1}$ during the simulation period. Comparing with the anthropogenic emission of South Korea, vegetation ecosystems offsets 3.3% of human emissions as a net carbon sink in 2007. To estimate the carbon budget more accurately, it is important to prepare reliable input datasets. And also, model parameters should be calibrated through comparing with various independent method. The result of this study, however, would be helpful for devising ecosystem management strategies that may help to mitigate global climate change.

Characterization of Ecological Networks on Wetland Complexes by Dispersal Models (분산 모형에 따른 습지경관의 생태 네트워크 특성 분석)

  • Kim, Bin;Park, Jeryang
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.16-26
    • /
    • 2019
  • Wetlands that provide diverse ecosystem services, such as habitat provision and hydrological control of flora and fauna, constitute ecosystems through interaction between wetlands existing in a wetlandscape. Therefore, to evaluate the wetland functions such as resilience, it is necessary to analyze the ecological connectivity that is formed between wetlands which also show hydrologically dynamic behaviors. In this study, by defining wetlands as ecological nodes, we generated ecological networks through the connection of wetlands according to the dispersal model of wetland species. The characteristics of these networks were then analyzed using various network metrics. In the case of the dispersal based on a threshold distance, while a high local clustering is observed compared to the exponential dispersal kernel and heavy-tailed dispersal model, it showed a low efficiency in the movement between wetlands. On the other hand, in the case of the stochastic dispersion model, a low local clustering with high efficiency in the movement was observed. Our results confirmed that the ecological network characteristics are completely different depending on which dispersal model is chosen, and one should be careful on selecting the appropriate model for identifying network properties which highly affect the interpretation of network structure and function.

Safety Assessment for LILW Near-Surface Disposal Facility Using the IAEA Reference Model and MASCOT Program (IAEA의 기준모델과 MASCOT 프로그램을 이용한 중저준위방사성폐기물 천층처분시설 안전성평가)

  • Kim, Hyun-Joo;Park, Joo-Wan;Kim, Chang-Lak
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.2
    • /
    • pp.111-120
    • /
    • 2002
  • A reference scenario of vault safety case prepared by the IAEA for the near-surface disposal facility of low-and informed]ate-level radioactive wastes is assessed with the MASCOT program. The appropriate conceptual models for the MASCOT implementation is developed. An assessment of groundwater pathway through a drinking well as a geosphere-biosphere interface is performed first. then biosphere pathway is analysed to estimate the radiological consequences of the disposed radionuclides based on compartment modeling approach. The validity of conceptual modeling for the reference scenario is investigated where possible comparing to the results generated by the other assessment. The result of this study shows that the typical conceptual model for groundwater pathway represented by the compartment model ran be satisfactorily used for safety assessment of the entire disposal system in a cons]stent way. It is also shown that safety assessment of a disposal facility considering complex and various pathways would be possible by the MASCOT program.

A Study on e-Healthcare Business Model: Focusing on Business Ecosystem Approach (e헬스케어 비즈니스모델에 관한 연구: 비즈니스생태계 접근 중심으로)

  • Kim, Youngsoo;Jung, Jai-Jin
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.1
    • /
    • pp.167-185
    • /
    • 2019
  • As most G-20 countries expect medical spending to grow rapidly over the next few decades, the burden of healthcare costs continues to grow globally due to an increase in the elderly population and chronic illnesses, and the ongoing quality improvement of health care services. However, under the rapidly changing technological environment of healthcare and IT convergence, the problem may become even bigger if not properly recognized and not properly prepared. In the context of the paradigm shift and the increasing problem of the medical field, complex responses in technical, institutional and business aspects are urgently needed. The key is to derive a business model that is appropriate for businesses that integrate IT in the medical field. With the arrival of the era of the 4th industrial revolution, new technologies such as Internet of Things have been applied to eHealthcare, and the need for new business models has emerged.In the e-healthcare of the Internet era, it became a traditional firm-based business model. However, due to the characteristics of dynamics and complexity of things Internet in the Internet of things, A business ecosystem-based approach is needed. In this paper, we present and analyze the major success factors of the ecosystem based on the 3 - layer structure of the e - healthcare business ecosystem as a result of research on e - healthcare business ecosystem based on emerging technology such as Internet of things. The three-layer business ecosystem was defined as (1) Infrastructure Layer, (2) Character Layer, and (3) Stakeholder Layer. As the key success factors for the eHealthCare business ecosystem, the following four factors are suggested: (1) introduction of the iHealthcare concept, (2) expansion of the business ecosystem, (3) business ecosystem change process innovation, and (4) business ecosystem leadership innovation.