DOI QR코드

DOI QR Code

Estimation of Vegetation Carbon Budget in South Korea using Ecosystem Model and Spatio-temporal Environmental Information

생태계 모형과 시공간 환경정보를 이용한 우리나라 식생 탄소 수지 추정

  • Yoo, Seong-Jin (Environmental GIS/RS center, Korea University) ;
  • Lee, Woo-Kyun (Department of Environmental Science and Ecological Engineering, college of life science, Korea University) ;
  • Son, Yo-Whan (Department of Environmental Science and Ecological Engineering, college of life science, Korea University) ;
  • Ito, Akihiko (National Institute for Environmental Studies)
  • 유성진 (고려대학교 환경 GIS/RS 센터) ;
  • 이우균 (고려대학교 생명과학대학 환경생태공학부) ;
  • 손요환 (고려대학교 생명과학대학 환경생태공학부) ;
  • 이토 아키히코 (일본 국립환경연구소)
  • Received : 2012.01.06
  • Accepted : 2012.02.05
  • Published : 2012.02.29

Abstract

In this study, we simulated a carbon flux model, so called Vegetation Integrated Simulator for Trace gases (VISIT) using Spatio-temporal Environmental Information, to estimate carbon budgets of vegetation ecosystem in South Korea. As results of the simulation, the model estimated that the annual-average gross primary production (GPP), net primary production (NPP) for 10 years were $91.89Tg\;C\;year^{-1}$, and $40.16Tg\;C\;year^{-1}$, respectively. The model also estimated the vegetation ecosystems in South Korea as a net carbon sink, with a value of $3.51Tg\;C\;year^{-1}$ during the simulation period. Comparing with the anthropogenic emission of South Korea, vegetation ecosystems offsets 3.3% of human emissions as a net carbon sink in 2007. To estimate the carbon budget more accurately, it is important to prepare reliable input datasets. And also, model parameters should be calibrated through comparing with various independent method. The result of this study, however, would be helpful for devising ecosystem management strategies that may help to mitigate global climate change.

본 연구에서는 시공간 환경정보를 이용하여 VISIT(Vegetation Integrated Simulator for Trace gases)이라는 생태계 모형 구동하였고, 우리나라의 생태계 탄소 수지를 추정하였다. 모델 구동 결과, 모델은 시뮬레이션 기간인 총 10년 동안 연평균 총일차생산량(GPP)과 순일차생산량(NPP)을 각각 $91.89Tg\;C\;year^{-1}$, $40.16Tg\;C\;year^{-1}$로 추정하였다. 그리고 이 기간 동안 우리나라의 식생 생태계는 연평균 $3.51Tg\;C\;year^{-1}$의 탄소를 흡수하는 역할을 수행한 것으로 추정되었다. 이를 우리나라의 인위적 탄소배출량 자료와 비교한 결과, 2007년 우리나라 식생 생태계는 탄소 흡수원으로서 인위적 탄소배출량의 3.3%를 상쇄시킨 것으로 나타났다. 향후 정확한 탄소수지 추정을 위해서는 신뢰성 있는 입력자료 구축과 다양한 연구 결과와의 비교를 통해 모델 변수의 보정이 필요하다. 하지만 본 연구의 결과는 기후변화 완화를 위한 생태계 관리 전략을 수립하는데 도움을 줄 것으로 생각된다.

Keywords

References

  1. 권효정, 김준, 2010. KoFlux 역정: 배경, 현황 및 향방, 한국농림기상학회지, 12(4): 241-263. https://doi.org/10.5532/KJAFM.2010.12.4.241
  2. 장지현, 홍진규, 변영화, 권효정, 채남이, 임종환, 김준, 2010. 한국의 두 주요 생태계에 대한 JULES 지면 모형의 민감도 분석: 일차생산량과 생태계 호흡의 모사에 미치는 생물리 모수의 영향, 한국농림기상학회지, 12(2): 107-121. https://doi.org/10.5532/KJAFM.2010.12.2.107
  3. 환경부, 2002. 인공위성영상자료를 이용한 토지피복지도 구축.
  4. Boden, T.A., G. Marland, and R.J. Andres, 2010. Global, Regional, and National Fossil-Fuel $CO_2$ Emissions, Carbon Dioxide Information Analysis Center, U.S.A.
  5. Buck, A.L., 1981. New equations for computing vapor pressure and enhancement factor, Journal of Applied Meteorology, 20(12): 1527-1532. https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2
  6. Choi, S., W.K. Lee, H. Kwak, S.R. Kim, S. Yoo, H.A. Choi, S. Park, and J.H. Lim, 2010. Vulnerability Assessment of Forest Ecosystem to Climate Change in Korea Using MC1 Model, Journal of Forest Planning, 15: 1-13.
  7. Choi, S.D., K. Lee, and Y.S. Chang, 2002. Large rate of uptake of atmospheric carbon dioxide by planted forest biomass in Korea, Global Biogeochemical Cycles, 16(4): 1089.
  8. Cox, P.M., R.A. Betts, C.D. Jones, S.A. Spall, and I.J. Totterdell, 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, 408(6809): 184-187. https://doi.org/10.1038/35041539
  9. De Pury, D. and G. Farquhar, 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models, Plant Cell and Environment, 20(5): 537-557. https://doi.org/10.1111/j.1365-3040.1997.00094.x
  10. Ichii, K., Y. Ohtani, K. Takagi, T. Suzuki, T. Kato, A. Ito, T. Hajima, M. Ueyama, and T. Sasai, 2009. Multi-model analysis of terrestrial carbon cycles in Japan: reducing uncertainties in model outputs among different terrestrial biosphere models using flux observations, Biogeosciences, 6(4): 8455-8502. https://doi.org/10.5194/bgd-6-8455-2009
  11. Intergovernmental Panel on Climate Change, 2007. Climate change 2007-the physical science basis: contribution of working group I to the fourth assessment report of the IPCC, Cambridge University Press, London.
  12. International Geosphere-Biosphere Programme, 2001. Global change and mountain regions, IGBP Report 49, IGBP.
  13. Ito, A. and T. Oikawa, 2002. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation, Ecological Modeling, 151(2-3): 143-176. https://doi.org/10.1016/S0304-3800(01)00473-2
  14. Ito, A., H. Muraoka, H. Koizumi, N. Saigusa, S. Murayama, and S. Yamamoto, 2006. Seasonal variation in leaf properties and ecosystem carbon budget in a cool-temperate deciduous broad-leaved forest: simulation analysis at Takayama site, Japan, Ecological Research, 21(1): 137-149. https://doi.org/10.1007/s11284-005-0100-7
  15. Ito, A., M. Inatomi, W. Mo, M. Lee, H. Koizumi, N. Saigusa, S. Murayama, and S. Yamamoto, 2007. Examination of model estimated ecosystem respiration using flux measurements from a cool temperate deciduous broad leaved forest in central Japan, Tellus, 59(3): 616-624. https://doi.org/10.1111/j.1600-0889.2007.00258.x
  16. Ito, A., 2008. The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data, Agricultural and Forest Meteorology, 148(5): 738-747. https://doi.org/10.1016/j.agrformet.2007.12.007
  17. Ito, A., 2010a. Evaluation of the impacts of defoliation by tropical cyclones on a Japanese forest's carbon budget using flux data and a process-based model, Journal of Geophysical Research, 115(G4): G04013. https://doi.org/10.1029/2010JG001314
  18. Ito, A., 2010b. Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model, Journal of Plant Research, 123(4): 577-588. https://doi.org/10.1007/s10265-009-0305-x
  19. Kurz, W.A., G. Stinson, G.J. Rampley, C.C. Dymond, and E.T. Neilson, 2008. Risk of natural disturbances makes future contribution of Canada's forests to the global carbon cycle highly uncertain, Proceedings of the National Academy of Sciences, 105(5): 1551. https://doi.org/10.1073/pnas.0708133105
  20. Leuning, R., F. Kelliher, D.G.G. Pury, and E.D. Schulze, 1995. Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies, Plant, Cell and Environment, 18(10): 1183-1200. https://doi.org/10.1111/j.1365-3040.1995.tb00628.x
  21. Li, X., M.J. Yi, Y. Son, G. Jin, K.H. Lee, Y.M. Son, and R.H. Kim, 2010. Research Articles: Allometry, Biomass and Productivity of Quercus Forests in Korea: A Literature-based Review, Journal of Korean Forest Society, 99(5): 726-735.
  22. METI, and NASA, 2009. Aster Global Digital Elevation Model, Ministry of Economy, Trade and Industry of Japan (METI) and the National Aeronautics and Space Administration (NASA), http://asterweb.jpl.nasa.gov/.
  23. Monsi, M. and T. Saeki, 1953. Uber den licht faktor in den pflanzen gesell schaften und seine bedeutung fur die stoff production, Japanese Journal of Botany, 14: 22-52.
  24. Monteith, J., 1981. Evaporation and surface temperature, Quarterly Journal of the Royal Meteorological Society, 107(451): 1-27. https://doi.org/10.1002/qj.49710745102
  25. Muraoka, H. and H. Koizumi, 2005. Photosynthetic and structural characteristics of canopy and shrub trees in a cool-temperate deciduous broadleaved forest: implication to the ecosystem carbon gain, Agricultural and Forest Meteorology, 134(1-4): 39-59. https://doi.org/10.1016/j.agrformet.2005.08.013
  26. Muraoka, H. and H. Koizumi, 2009. Satellite Ecology (SATECO)--linking ecology, remote sensing and micrometeorology, from plot to regional scale, for the study of ecosystem structure and function, Journal of Plant Research, 122(1): 3-20. https://doi.org/10.1007/s10265-008-0188-2
  27. Noh, N. J., Y. Son, S.K. Lee, T.K. Yoon, K.W. Seo, C. Kim, W.K. Lee, S.W. Bae, and J. Hwang, 2010. Influence of stand density on soil CO2 efflux for a Pinus densiflora forest in Korea, Journal of Plant Research, 123: 411-419. https://doi.org/10.1007/s10265-010-0331-8
  28. Ohtsuka, T., T. Akiyama, Y. Hashimoto, M. Inatomi, T. Sakai, S. Jia, W. Mo, S. Tsuda, and H. Koizumi, 2005. Biometric based estimates of net primary production (NPP) in a cool-temperate deciduous forest stand beneath a flux tower, Agricultural and Forest Meteorology, 134(1-4): 27-38. https://doi.org/10.1016/j.agrformet.2005.11.005
  29. Potter, C., S. Klooster, R. Nemani, V. Genovese, S. Hiatt, M. Fladeland, and P. Gross, 2006. Estimating carbon budgets for US ecosystems, EOS, 87: 1-3.
  30. Prentice, I.C., G. Farquhar, M. Fasham, M. Goulden, M. Heimann, V. Jaramillo, H. Kheshgi, C. LeQuere, R. Scholes, and D. Wallace, 2001. The carbon cycle and atmospheric carbon dioxide, Cambridge University Press, London.
  31. Running, S.W., R.R. Nemani, F.A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto, 2004. A continuous satellite-derived measure of global terrestrial primary production, Bioscience, 54(6): 547-560. https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
  32. Saigusa, N., S. Yamamoto, S. Murayama, and H. Kondo, 2005. Inter-annual variability of carbon budget components in an AsiaFlux forest site estimated by long-term flux measurements, Agricultural and Forest Meteorology, 134(1-4): 4-16. https://doi.org/10.1016/j.agrformet.2005.08.016
  33. Sasai, T., K. Okamoto, T. Hiyama, and Y. Yamaguchi, 2007. Comparing terrestrial carbon fluxes from the scale of a flux tower to the global scale, Ecological Modeling, 208(2-4): 135-144. https://doi.org/10.1016/j.ecolmodel.2007.05.014
  34. Son, Y., I.H. Park, M.J. Yi, H.O. Jin, D.Y. Kim, R.H. Kim, and J.O. Hwang, 2004. Biomass production and nutrient distribution of a natural oak forest in central Korea, Ecological Research, 19(1): 21-28. https://doi.org/10.1111/j.1440-1703.2003.00617.x

Cited by

  1. A Study on the Baseline Carbon Stock for Major Species in Korea for Conducting Carbon Offset Projects based on Forest Management vol.103, pp.3, 2014, https://doi.org/10.14578/jkfs.2014.103.3.439
  2. Climate Change Impact on Korean Forest and Forest Management Strategies vol.35, pp.3, 2017, https://doi.org/10.11626/KJEB.2017.35.3.413
  3. 기후변화에 따른 수도권 산림의 순일차생산량과 토양탄소저장량의 시공간적 변화 추정 vol.21, pp.5, 2012, https://doi.org/10.14249/eia.2012.21.5.757
  4. HadGEM-CC 모델의 RCP 시나리오에 따른 전지구 탄소수지 변화 전망 vol.25, pp.1, 2012, https://doi.org/10.14191/atmos.2015.25.1.085
  5. 에디 공분산 기반의 플럭스 타워 관측자료를 이용한 국내외 산림과 농업 생태계 탄소 흡수량 분석 vol.26, pp.2, 2012, https://doi.org/10.14249/eia.2017.26.2.127
  6. 환경공간정보의 이해와 활용 vol.33, pp.5, 2012, https://doi.org/10.7780/kjrs.2017.33.5.3.1
  7. 산림의 CO2 흡수량 평가를 위한 통계 및 공간자료의 활용성 검토 - 안산시를 대상으로 - vol.27, pp.2, 2012, https://doi.org/10.14249/eia.2018.27.2.124