• Title/Summary/Keyword: 생체모사공학

Search Result 24, Processing Time 0.021 seconds

Technology and Application of Cells on Chips (세포칩 기술과 응용)

  • Kim, C.B.;Song, K.B.
    • Electronics and Telecommunications Trends
    • /
    • v.26 no.3
    • /
    • pp.95-104
    • /
    • 2011
  • 셀칩(cells on chips)이란, MEMs/NEMs 응용분야 중 생명공학과 관련된 세포분야로의 응용에 이용되는 대표적인 기술로서 현재 전세계에서 경쟁적으로 연구, 개발되고 있다. 셀칩은 생체내부에서 세포가 성장하는 공간적(spatial), 시간적(temporal) 조건을 정교하게 모사(mimicking)함으로써, 복잡한 생화학적 생체 내(in vivo) 환경을 이해할 수 있는 새로운 기회를 창조하고 있다. 또한 셀칩과 다양한 형태의 분석용 센서와의 결합된 시스템을 통하여, 세포기반 질병진단 시스템의 소형화 및 조기진단 시스템 개발을 위한 바이오멤스 핵심 플랫폼 기술로 인식되고 있다. 즉 DNA, 단백질, 세포 등의 바이오 물질을 마이크로/나노시스템 위에서 검출 및 분석함으로써 극미량의 생체물질을 실시간 고감도 분석이 가능하게 할 것이다. 본 고에서는 셀칩분야의 기술 및 응용에 관해 정리하고 있다.

  • PDF

Large Area Deposition of Biomimetic Polydopamine-Graphene Oxide Hybrids using Langmuir-Schaefer Technique (랭뮤어-쉐퍼 기법 이용 생체모사 폴리도파민-산화그래핀 복합체 대면적 적층 기법 연구)

  • Kim, Tae-Ho;Song, Seok Hyun;Jo, Kyung-Il;Koo, Jaseung
    • Journal of Adhesion and Interface
    • /
    • v.20 no.3
    • /
    • pp.110-115
    • /
    • 2019
  • Graphene oxide has been gathering interests as a way to exfoliate graphene. Since the oxidation group of graphene oxide can hydrogen bond with various functional groups, tremendous efforts have been actively conducted to apply various applications. However, graphene oxide alone cannot substantially possess the mechanical properties required for the practical application. Therefore, in this study, polydopamine, which is a bio-mimetic mussel protein-inspired material, was combined with graphene oxide to form a large-area composite membrane at the liquid-gas interface. In addition, the morphology of the polydopamine-graphene oxide composite thin film was also controlled to obtain a composite membrane having a nano-wrinkle structure. It can be expected to be used in the next generation seawater desalination membranes or carbon composites because it can form mechanically superior and sophisticated nanostructures.

THRUST GENERATION AND PROPULSIVE EFFICIENCY OF A BIOMIMETIC FOIL MOVING IN A LOW REYNOLDS NUMBER FLOW (저 레이놀즈 수에서 이동하는 생체모사익의 추력 생성 및 추진효율)

  • An, Sang-Joon;Choi, Jong-Hyeok;Maeng, Joo-Sung;Han, Cheol-Heui
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.41-46
    • /
    • 2010
  • In this paper, the fluid dynamic forces and performances of a moving airfoil in the low Reynolds number flow is addressed. In order to simulate the necessary propulsive force for the moving airfoil in a low Reynolds number flow, a lattice-Boltzmann method is used. The critical Reynolds and Strouhal numbers for the thrust generation are investigated for the four propulsion types. It was found that the Normal P&D type produces the largest thrust with the highest efficiency among the investigated types. The leading edge of the airfoil has an effect of deciding the force production types, whereas the trailing edge of the airfoil plays an important role in augmenting or reducing the instability produced by the leading edge oscillation. It is believed that present results can be used to decide the optimal propulsion types for the given Reynolds number flow.

Aerodynamic Characteristics of a Three-Dimensional Wing in Heave Oscillation (히브진동하는 3차원 날개 공력특성)

  • Chin, Chul-Soo;Kim, Tae-Wan;Lee, Hyoung-Wook;Han, Cheol-Heui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.905-911
    • /
    • 2011
  • With the progress of micro actuator technology, studies on the development of micro air flapping wing vehicles are actively undergoing. In the present study, the changes of both lift and thrust characteristics of the wings are investigated using a boundary element method. Lift of the heaving wing is not generated when the wing is beating with smaller frequencies than 1 Hz. Thrust increases with amplitude and frequency. As the wing's taper and aspect ratios increase, both lift and thrust also increase. Results on the pitching oscillation and flapping motion will be included in the future work.

Design and Optimization Study of Active Trasfemoral Prosthesis leg (대퇴 절단 환자를 위한 능동대퇴의지구조 설계 및 최적화 연구)

  • Lee, K.H.;Chung, J.H.;Lee, C.-H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.7 no.2
    • /
    • pp.41-46
    • /
    • 2013
  • IIn this paper, active trasfemoral prosthesis leg is designed for the handicapped who lost their legs upon knee. It is important to design proper knee joint to mimic walking motion of hyman. 1 degree-of-freedom active trasfemoral prosthesis leg is designed with knee joint. Operating angle and torque have been calculated using kinematics of three linkages in prosthesis leg. Finite element analysis of major components is performed to evaluate the safety under operating condition and to reduce weights. Minimum volumes of components are obtained by optimization as satisfying safety requirements. The results show that about 35% of weight of components is reduced.

  • PDF

Molecular Dynamics Study to Investigate Ion Selectivity of Functionalized Carbon Nanotube Membranes (기능화된 탄소나노튜브 멤브레인의 이온 선택성에 관한 분자동역학 연구)

  • Suk, Myung Eun
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.388-394
    • /
    • 2018
  • Carbon nanotube (CNT) based membranes are promising candidates for separation membranes by showing high water transport rate and ion rejection rate according to their radii. The ion selectivity is an important factor to discover the full potential of CNT membranes, and it is affected by the functionalization of CNTs. With multivalent/size ion mixtures, the ion selectivity is affected by not only ion-functional groups interaction but also ion-ion interactions and ion size exclusion in a complex manner. In this study, molecular dynamics simulations are performed to study the ion selectivity of functionalized carbon nanotubes when multivalent/size ions are contained. The permeation energy barriers are calculated by plotting potential of mean force profiles, and various factors, such as CNT size and partial charges, affecting ion selectivity are investigated. The results presented here will be useful for designing CNT membranes for ion separation, biomimetic ion channels, etc.

Development of Biomimetic Scaffold for Tissue Engineering (조직공학을 위한 생체모사용 스캐폴드 개발)

  • Park, Su-A;Lee, Jun-Hee;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Tissue engineering is a research field for artificial substitutes to improve or replace biological functions. Scaffolds play a important role in tissue engineering. Scaffold porosity and pore size provide adequate space, nutrient transportation and cell penetration throughout the scaffold structure. Scaffold structure is directly related to fabrication methods. This review will introduce the current technique of 3D scaffold fabrication for tissue engineering. The conventional technique for scaffold fabrication includes salt leaching, gas foaming, fiber bonding, phase seperation, melt moulding, and freeze drying. These conventional scaffold fabrication has the limitations of cell penetration and interconnectivity. In this paper, we will present the solid freeform fabrication (SFF) such as stereolithography (SLA), selective laser sintering (SLS), and fused deposition modeling (FDM), and 3D printing (3DP).

Adaptive Gripper Mimicking Large Deforming Proleg of Hydraulic Skeleton Caterpillar (유체골격 애벌레의 다리조직 대변형을 모사한 적응형 그리퍼)

  • Jung, Gwang-Pil;Koh, Je-Sung;Cho, Kyu-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.1
    • /
    • pp.25-32
    • /
    • 2012
  • In this study, we present a gripping mechanism that is inspired by caterpillar's proleg. A caterpillar's proleg has planta that gives compliance to the proleg by greatly deforming its shape. In the bio-inspired gripper, the planta is implemented by flexure joints. The flexures buckle when end force and end moment is applied on the joint in opposite direction. Using this characteristic, the gripping structure is designed so that the flexure buckling can occur. Flexure buckling increases the region where gripping force is constant and this region leads to increasing in gripping range. At the same time, flexure buckling decouples all spines and therefore all spines can move differentially and independently. With this simple but effective mechanism, the bioinspire gripper can achieve adaptive gripping on rough and rugged surfaces. A prototype is built to demonstrate adaptive gripping on rough and rugged surfaces such as cement block, brick.

A Study on the Feasibility of Lead(II) Iodide and Gd2O2S:Tb Overlapping Sensors in Gamma Source Conditions using FLUKA Simulation (FLUKA 전산 모사를 통한 감마선원 조건에서의 요오드화납(II)과 Gd2O2S:Tb가 결합된 센서의 적용가능성 연구)

  • Yang, Seung-Woo;Park, Yoon-Hee;Park, Ji-Koon;Heo, Ye-Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.381-386
    • /
    • 2022
  • Non-Destruction Test (NDT) is a method to check internal defects without destroying the product. Among them, radiographic testing (RT) uses high-energy radiation, so it is very important to prevent radiation exposure of workers. Therefore, in this study, in this study, a radiation sensor structure that improves radiation detection performance compared to the existing PbI2 and can immediately detect accidents in RT was presented. For evaluation, the conversion efficiency was analyzed in the gamma ray source through FLUKA simulation. PbI2 with overlapping Gd2O2S:Tb presented in this study showed a higher radiation sensitivity from 1.22 to 3.22 times than that of non-overlapping PbI2. This indicates that the presented sensor is suitable for use as a radiation sensor for source detection in RT.

Effects of Glucose and Ammonium Concentrations in Continuous Culture for Poly-$\beta$-hydroxybutyrate Production (Poly-$\beta$-hydroxybutyrate 생산을 위한 연속배양에서 포도당 및 암모늄 농도의 영향)

  • 이용우;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.597-606
    • /
    • 1992
  • Effects of dilution rate, inlet glucose and ammonium chloride concentrations on ,he performance of continuous culture of Alcaligenes eutrQPhus for poly-p-hydroxybutyrate (PHB) production were investigated. When inlet substrate concentrations were maintained constant (inlet glucose concentration = 20 g/l, inlet ammonium chloride concentration = 2 g/l), growth rate of residual biomass and PHB production rate showed its maximum at $0.1h^{-1}$ and $0.06h^{-1}$, respectively, and washout at $0.13h^{-1}$. PHB content decreased from 50% to 25% by increasing dilution rate, while specific PHB production rate increased continuously. Cell mass and PHB concentration gave its maximum values at inlet ammonium chloride concentration of 2 g/l and thereafter decreased, which showed the existence of substrate inhibition by ammonium. When inlet glucose concentration was 30 g/l, cell mass reached its maximum value, while PHB concentration increased continuously. The parameters of kinetic model were evaluated by the graphical and parameter estimation methods. The computer simulation results for the effects of dilution rate, inlet glucose and ammonium chloride concentrations fitted the experimental data very well.

  • PDF