• Title/Summary/Keyword: 생체모방공학

Search Result 52, Processing Time 0.034 seconds

Analysis of Effective Anisotropic Elastic Constants and Low-Velocity Impact of Biomimetic Multilayer Structures (생체구조를 모방한 다층복합재료의 이방성 유효탄성계수 및 저속 충격 해석)

  • Lee, Jong-Won;Beom, Hyeon-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1245-1255
    • /
    • 2012
  • Effective elastic constants of biomimetic multilayer structures with hierarchical structures are evaluated based on the potential energy balance method. The effective anisotropic elastic constants are used in analyzing low-velocity impact of biomimetic multilayer structures consisting of mineral and protein. It is shown that displacements of biomimetic multilayer structures strongly depend on the volume fraction of mineral and hierarchical level. The effect of the volume fraction of mineral and hierarchical level on the contact force and stresses at the impact point are also discussed.

Electromechanical Simulation of Cellulose Based Biomimetic Electro-Active Paper (생체모방 종이작동기(electro-active paper)의 전기기계적인 구동 시뮬레이션)

  • Jang, Sang-Dong;Kim, Jae-Hwan;Kim, Heung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1179-1183
    • /
    • 2007
  • Electro-Active paper(EAPap) is a new smart material that has a potential to be used in biomimetic actuator and sensor. It is made by cellulose that is abundant material in nature. EAPap is fascinating with its biodegradability, lightweight, large displacement, high mechanical strength and low actuation voltage. Actuating mechanism of EAPap is known to be the combined effects of ion migration and piezoelectricity. However, the electromechanical actuation mechanisms are not yet to be established. This paper presents the modeling of the actuation behavior of water infused cellulose samples and their composite dielectric constants calculated by Maxwell-Wagner theory. Electro-mechanical forces were calculated using Maxwell stress tensor method. Bending deflection was evaluated from simple beam model and compared with experimental observation, and which result in good correlation with each other.

Biomineralization and Biomimetics from the Point of Mineral Processing (광물 합성 공정의 관점에서 본 생광물화과정 및 생체모방공학)

  • Lee, Seung-Woo;Jang, Young-Nam;Park, Seung-Bin
    • The Korean Journal of Malacology
    • /
    • v.26 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • Biological organisms produce organic-inorganic nanocomposite composites that are hierarchically organized in composition and microstructure, containing both inorganic and organic components in complicated mixtures. The process related to the generation and regeneration of organic-inorganic complex in nature is called biomineralization process. Understanding how the process operates in a biological environment is a valuable guide to the synthesis of novel advanced material and developing important industrial processes. Like the mechanism of organisms, mollusks were also synthesized from interaction between organic matrices and minerals and their morphology was designed through biomineralization. In this study, shell formation has been studied as a bio-model and the application of biomimetics based on biomineralization is focused.

Introduction to Ionic Polymer-Metal Composite Actuators and Their Applications (이온성 고분자-금속 복합체 작동기의 소개 및 이의 응용)

  • Jeon, Jin-Han;Oh, Il-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1242-1250
    • /
    • 2011
  • Several biomimetic artificial muscles including the electro-active synthetic polymers (SSEBS, PSMI/PVDF, SPEEK/PVDF, SPSE, XSPSE, PVA/SPTES and SPEI), bio-polymers (Bacterial Cellulose and Cellulose Acetate) and nano-composite (SSEBS-CNF, SSEBS-$C_{60}$, Nafion-$C_{60}$ and PHF-SPEI) actuators are introduced in this paper. Also, some applications of the developed biomimetic actuators are explained including biomimetic robots and biomedical active devices. Present results show that the developed electro-active polymer actuators with high-performance bending actuation can be promising smart materials applicable to diverse applications.

The Effect of Aspect Ratio on the Aerodynamic Characteristics of an Insect-based Flapping Wing (곤충 모방형 플래핑 날개의 공력특성에 관한 가로세로비 효과)

  • Han, Jong-Seob;Chang, Jo-Won;Jeon, Chang-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.8
    • /
    • pp.662-669
    • /
    • 2012
  • The effect of aspect ratio (AR) on the aerodynamic characteristics of a flapping wing was examined to analyze the design parameters of an insect-based MAV. The experimental model constructed with 4-bar linkages was operated in a water tank with the condition of a low Reynolds number. A water-proof micro-force load cell was fabricated and installed at the root of the wing which is made of a plexiglas. The wing shapes were based on the planform of a fruit fly wing. The ARs selected were 1.87, 3.74 and 7.48 and the Reynolds number was fixed at $10^4$. For AR=1.87 and 3.74, distinct lift peaks which indicate unsteady effects such as 'wake-capture' were observed at the moment of the start of the wing-stroke. However, for AR=7.48, no unsteady effects were observed. These phenomena were also observed in the delayed rotation case. The results indicate that a larger AR provides better aerodynamic performance for the insect-based flapping wing which can be applied in MAV designs.

Biomimetic Engineering of Carbon Dioxide Capture (생체모방공학을 이용한 이산화탄소 포집)

  • Kim, Dae-Hoon;Vinoba, Mari;Shin, Woo-Sup;Lim, Kyong-Soo;Jeong, Soon-Kwan;Kim, Sung-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.491-494
    • /
    • 2010
  • 지구온난화의 주범인 온실가스 중 이산화탄소 농도 증가에 따라 현재 전 세계적으로 사회적, 환경적, 경제적으로 피해가 나타나고 있다. 그래서 CCS연구를 적용하여 이산화탄소를 포집하는 연구가 활발하게 진행 되고 있으나 분리, 수송, 저장 등의 추가적인 비용이 발생하는 문제점을 가지고 있다. 본 논문은 생체촉매효소를 이용하여 이산화탄소를 포집하는 연구를 하였다. 반응온도, pH, 이산화탄소 농도 등의 변수를 이용한 생체촉매효소의 활성평가, 반응속도, 광물화의 특성에 관하여 연구하였다.

  • PDF

Control of Walking Robot based on Reinforcement Learning and Manifold Control (강화학습과 메니폴드 제어기법을 이용한 걷는 로봇의 제어)

  • Mun, Yeong-Jun;Park, Ju-Yeong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.135-138
    • /
    • 2008
  • 최근 인간을 모방하는 휴머노이드 로봇(Humanoid robot)에 대한 관심이 증가함에 따라, 기계공학, 생체공학, 제어이론 등 여러 분야에서 관련 연구가 활발히 진행되고 있다. 이에 본 논문에서는 액츄에이터(Actuator)가 없이 경사진 지면을 걸을 수 있는 두 발을 가진 패시브 로봇(Passive robot)을 대상으로 강화학습과 메니폴드(Manifold control) 기법을 사용하여 안정적으로 걸을 수 있도록 제어기(Controller)를 설계하는 방안을 고려한다.

  • PDF

Development and Evaluation of the Biomimetic Actuator based on Bacterial Cellulose (박테리아 셀룰로오스 기반 생체모방 작동기 개발 및 평가)

  • Kim, Si-Seup;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.302-306
    • /
    • 2012
  • Bacterial cellulose based actuator with large displacement was developed for biomimetic robots. Bacterial cellulose has 3D nanostructure with high porosity which was composed of the nanofibers. Freeze dried bacterial cellulose was dipped into ionic liquid solution such as 1-butyl-3-methylimidazolium(BMIMCl) to enhance the actuation performance due to increase the ionexchange capacity and ionic conductivity. And Poly(3,4-ethylenedioxythiophene)-poly (styrnenesulfonate)(PEDOT:PSS) was used for the electrodes of both side of bacterial cellulose actuator by dipping and drying method. The FT-IR and XRD were conducted to examine the electrochemical changes of developed bacterial cellulose actuator. The biomimetic caudal fin was designed using bacterial cellulose actuator and PDMS to verify the possibility for biomimetic robot. The step and harmonic response were conducted to evaluate the performance of developed biomimetic actuator.

Study on the Thrust Generation of Flapping Flat Plates for Microscale Biomedical Swimming Robots (초소형 의공학용 유영로봇을 위한 플래핑 평판들의 추력 발생 연구)

  • An, Sang-Joon;Kim, Young-Dae;Maeng, Joo-Sung;Han, Cheol-Heui
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.415-420
    • /
    • 2007
  • Creatures in nature flap their wings to generate fluid dynamic forces that are required for the locomotion. Small-size creatures do not use flapping wings. Thus, it is questionable at which Reynolds number the propulsion using the flapping wings are effective. In this paper, the onset conditions of the thrust generation from the combined motion of flat plates (heaving, pitching in the motion and also tandem, biplane in the array) is investigated using a Lattice Boltzmann method. To solve the pitching motion of the plate on the regularly spaced lattices, 2-D moving boundary condition was implemented. The present method is validated by comparing the wake patterns behind a oscillating circular cylinder and its hydrodynamic characteristics with the CFD results. Present method can be applied to the design of micro flapping propulsors for biomedical use.

  • PDF

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.