Biomineralization and Biomimetics from the Point of Mineral Processing

광물 합성 공정의 관점에서 본 생광물화과정 및 생체모방공학

  • Lee, Seung-Woo (CO2 Sequestration Research Department, Korea Institute of Geoscience & Mineral Resources) ;
  • Jang, Young-Nam (CO2 Sequestration Research Department, Korea Institute of Geoscience & Mineral Resources) ;
  • Park, Seung-Bin (Department of Chemical and Biomolecular Engineering, KAIST)
  • 이승우 (지구환경연구본부 CO2 처분연구실, 한국지질자원연구원) ;
  • 장영남 (지구환경연구본부 CO2 처분연구실, 한국지질자원연구원) ;
  • 박승빈 (생명화학공학과, KAIST)
  • Received : 2009.11.10
  • Accepted : 2010.01.30
  • Published : 2010.03.31

Abstract

Biological organisms produce organic-inorganic nanocomposite composites that are hierarchically organized in composition and microstructure, containing both inorganic and organic components in complicated mixtures. The process related to the generation and regeneration of organic-inorganic complex in nature is called biomineralization process. Understanding how the process operates in a biological environment is a valuable guide to the synthesis of novel advanced material and developing important industrial processes. Like the mechanism of organisms, mollusks were also synthesized from interaction between organic matrices and minerals and their morphology was designed through biomineralization. In this study, shell formation has been studied as a bio-model and the application of biomimetics based on biomineralization is focused.

자연에 존재하는 생명체들은 유기-무기 성분들이 포함된 미세구조로 이루어진 계층학적으로 복잡한유-무기 나노 복합재를 합성한다. 자연에서 진행되는 유기-무기 나노복합재의 생성 및 재생 과정은 생광물화과정으로서 생물학적 환경에서 진행되는 생광물화과정의 연구는 신물질 합성에 대한 단서를 제공할 뿐만 아니라 산업적으로 중요한공정의 개발에 있어 귀중한 지침으로 활용될 수 있다. 연체동물 역시 생광물화과정을 수행하는 다른 생명체들과 마찬가지로 단백질과 다당류로 이루이진 유기매트릭스와 무기물의 상호작용을 통하여 패각을 설계하고 합성한다. 본 고찰에서는 이매패류의 패각 형성 과정 연구를 기반으로 아울러 생광물화과정 연구를 기반으로 한 소재합성과 관련된 생체모방공학 기술을 고찰하였다.

Keywords

References

  1. http://en.wikipedia.org/wiki/Aragonite
  2. http://en.wikipedia.org/wiki/Calcite
  3. http://en.wikipedia.org/wiki/Calcium_carbonate
  4. 홍정기, 문희성. (2009) 미래의 유망소재. LG Business Insight, 25: 2-19.
  5. Addadi, L., and Weiner, S. (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc. Natl. Acad. Sci. USA, 82: 4110-4114. https://doi.org/10.1073/pnas.82.12.4110
  6. Aizenberg, J., Muller, D.A., Grazul, J.L., and Hamann, D.R. (2003) Direct fabrication of large micropatterned single crystals. Science, 299: 1205-1208. https://doi.org/10.1126/science.1079204
  7. Aoki, H. (1991) Science and medical application of hydroxyapatite. Japan Association of Apatite Science. Tokyo
  8. Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., and Morse, D.E. (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature, 381: 56-58. https://doi.org/10.1038/381056a0
  9. Bischoff, J. (1968) Kinetics of calcite nucleation: Magnesium ion inhibition and ionic-strength catalysis. J. Geophys. Res., 73: 3315-3322. https://doi.org/10.1029/JB073i010p03315
  10. Blakemore, R.P. (1986) Magnetotactic bacteria. CRC Critical Rev. in Biochem., 20: 365-380. https://doi.org/10.3109/10409238609081998
  11. Bond, G.M., Stringer, J., Brandvold, D.K., Simsek, F.A., Medina, M.-G., and Egeland, G. (2001) Development of Integrated System for Biomimetic $CO_2$ Sequestration Using the Enzyme Carbonic Anhydrase. Energy & Fuels, 15: 309-316. https://doi.org/10.1021/ef000246p
  12. Boyde, A. (1971) Comparative Histology of Mammalian Teeth. In: Dahlberg AA (ed) Dental Morphology and Evolution. Chicago University Press, Chicago, pp 81-94
  13. Busenberg, E., and Plummer, L.N. (1986) A comparison study of the dissolution and crystal growth kinetics of calcite and aragonite. USGS Bull, 1578: 139-168.
  14. Checa, A. (2000) A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue Cell, 32: 405-416. https://doi.org/10.1054/tice.2000.0129
  15. Checa, A.G. (2005) Rodríguez-Navarro AB and Esteban-Delgado FJ, The nature and formation of calcitic columnar prismatic shell layers in periomorphian bivalves. Biomaterials, 26: 6404-6414. https://doi.org/10.1016/j.biomaterials.2005.04.016
  16. Chegwidden, W.R., Carter, N.D., and Edwards, Y.H. (2000) The carbonic anhydrase new horizons. Birkhauser Verglag. Basel, Switzerland.
  17. Choi, C.S., and Kim, Y.W. (2000) A study of the correlation between organic matrices and nanocomposite materials in oyster shell formation. Biomaterials 21: 213-222. https://doi.org/10.1016/S0142-9612(99)00120-9
  18. Colfen, H., and Mann, S. (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed Engl, 42: 2350-2365. https://doi.org/10.1002/anie.200200562
  19. Colfen, H., and Antonietti, M. (2008) Mesocrystals and Nonclassical crystallization. John Wiley & Sons.
  20. Cortie, M.B., McBean, K.E., and Elcombe, M.M. (2006) Fracture mechanics of mollusc shells. Physica B: Condensed Matter, 385-386: 545-547. https://doi.org/10.1016/j.physb.2006.05.356
  21. Dilmore, R., Griffith, C., Liu, Z., Soong, Y., Hedges, S.W., Koepsel, R., and Ataai, M. (2009) Carbonic anhydrase-facilitated $CO_2$ absorption with polyacrylamide buffering bead capture. International Journal of Greenhouse Gas Control, 3: 401-410. https://doi.org/10.1016/j.ijggc.2009.01.004
  22. Ehrlich, H., Koutsoukos, P.G., Demadis, K.D., and Pokrovsky, O.S. (2008) Principles of demineralization: Modern strategies for the isolation of organic frameworks: Part I. Common definitions and history. Micron, 39: 1062-1091. https://doi.org/10.1016/j.micron.2008.02.004
  23. Ehrlich, H., Koutsoukos, P.G., Demadis, K.D., and Pokrovsky, O.S. (2009) Principles of demineralization: Modern strategies for the isolation of organic frameworks: Part II. Decalcification. Micron, 40: 169-193. https://doi.org/10.1016/j.micron.2008.06.004
  24. Eichhorn, S.J., Scurr, D.J., Mummery, P.M., Golshan, M., Thompson, S.P., and Cernik, R.J. (2005) The role of residual stress in the fracture properties of a natural ceramic. J. Mater. Chem., 15: 947-952. https://doi.org/10.1039/b407994a
  25. Fen, N., DeOliveira, D.B., Trumble, W.R., Sarkar, H.K., and Singh, B.R. (1994) Secondary Structure Estimation of Proteins Using the Amide III Region of Fourier Transform Infrared Spectroscopy: Application to Analyze Calcium-Binding-Induced Structural Changes in Calsequestrin. Appl. Spectrosc., 48: 1432-1441. https://doi.org/10.1366/0003702944028065
  26. Frankel, R.B., Blakemore, R.P., and Wolfe, R.S. (1979) Magnetite in Freshwater Magnetotactic Bacteria. Science, 203: 1355-1356. https://doi.org/10.1126/science.203.4387.1355
  27. Fratzl, P. (2004) Hierarchical Structure and Mechnical Adaptation of Biological Materials. In: Reis RL, Weiner S (eds) Learning from Nature How to Design New Implantable Biomaterials: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes. Academic Publishers, Boston, pp 15-36
  28. Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A., and Shapoval, S.Y. (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater, 2: 461-463. https://doi.org/10.1038/nmat917
  29. Goormaghtigh, E., Cabiaux, V., and Ruysschaert, J.M. (1990) Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier-transform infrared spectroscopy on hydrated films. Eur J Biochem, 193: 409-420. https://doi.org/10.1111/j.1432-1033.1990.tb19354.x
  30. Gotliv, B.A., Kessler, N., Sumerel, J.L., Morse, D.E., Tuross, N., Addadi, L., and Weiner, S. (2005) Asprich: A novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. Chembiochem 6: 304-314. https://doi.org/10.1002/cbic.200400221
  31. Gregorie, C. (1972) Structure of the molluscan shell. In: Florkin M, Scheer BT (eds) Chemical Zoology Chemical Zoology, New York and London, pp 45-102
  32. Gutknecht, J., Bisson, M.A., and Tosteson, F.C. (1977) Diffusion of carbon dioxide through lipid bilayer membrane. J. Gen. Physiol., 69: 779-794.
  33. Han, X., Zhang, D., Li, X., and Li, Y. (2008) Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin. Chinese Science Bulletin, 53: 1587-1592. https://doi.org/10.1007/s11434-008-0219-3
  34. Hare, P.E. (1963) Amino acids in the proteins from aragonite and calcite in the shells of Mytilus californianus. Science, 139: 216-217. https://doi.org/10.1126/science.139.3551.216
  35. Haris, P.I., and Chapman, D. (1994) Analysis of polypeptide and protein structures using Fourier transform infrared spectroscopy. Methods Mol. Biol., 22: 183-202.
  36. Harkness, J.M. (2002) A lifetime of connections-Otto Herbert Schmitt, 1913-1998. Phys. Perspect., 4: 456-490. https://doi.org/10.1007/s000160200005
  37. Hou, W.T., and Feng, Q.L. (2003) Crystal orientation preference and formation mechanism of nacreous layer in mussel. J. Cryst. Grow., 258: 402-408. https://doi.org/10.1016/S0022-0248(03)01551-3
  38. Jeronimidis, G. (2009) Biomimetics. In: Hornyak GL, Tibbals HF, Dutta J, Moore JJ (eds) Introduction to Nanoscience & Nanotechnology CRC Press, pp 1322-1403
  39. Jin-Ming, W., Hayakawa, S., Tsuru, K., and Osaka, A. (2004) Low-Temperature Preparation of Anatase and Rutile Layers on Titanium Substrates and Their Ability To Induce in Vitro Apatite Deposition. Journal of the American Ceramic Society, 87: 1635-1642. https://doi.org/10.1111/j.1551-2916.2004.01635.x
  40. Kamat, S., Su, X., Ballarini, R., and Heuer, A.H. (2000) Structural basis for the fracture toughness of the shell of the conch Strombus gigas. Nature, 405: 1036-1040. https://doi.org/10.1038/35016535
  41. Kamino, K. (2008) Underwater adhesive of marine organisms as the vital link between biological science and material science. Mar Biotechnol (NY), 10: 111-121. https://doi.org/10.1007/s10126-007-9076-3
  42. Kaplan, D.L. (1998) Mollusc shell structures: novel design strategies for synthetic materials. Biomaterials, 3: 232-236.
  43. Kauppinen, J.K., Moffatt, D.J., Mantsch, H.H., and Cameron, D.G. (1981) Fourier self-deconvolution: a method for resoliving intrinsical overlapped bands. Appl. Spectrosc., 35: 271. https://doi.org/10.1366/0003702814732634
  44. Kitamura, M., Konno, H., Yasui, A., and Masuoka, H. (2002) Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions. J. Cryst. Growth, 236: 323-332. https://doi.org/10.1016/S0022-0248(01)02082-6
  45. Kono, M., Hayashi, N., and Samata, T. (2000) Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem Biophys Res Commun, 269: 213-218. https://doi.org/10.1006/bbrc.2000.2274
  46. Landi, E., Celotti, G., Logroscino, G., and Tamieri, A. (2003) Carbonated hydroxyapatite as bone substitute. J. Eur. Ceram. Soc., 23: 2931-2937. https://doi.org/10.1016/S0955-2219(03)00304-2
  47. Lee, H., Scherer, N.F., and Messersmith, P.B. (2006) Single-molecule mechanics of mussel adhesion. Proc Natl Acad Sci USA, 103: 12999-13003. https://doi.org/10.1073/pnas.0605552103
  48. Lee, J.Y., Buxton, G.A., and Balazs, A.C. (2004) Using nanoparticles to create self-healing composites. J. Chem. Phys., 121: 5531-5540. https://doi.org/10.1063/1.1784432
  49. Lee, K.B., Lee, S.W., and Park, S.B. (2009) Growth of single-crystalline sodium titanate and sodium tungstate one-dimensional nanostructures: Bio-inspired approach using oyster shell. Journal of Crystal Growth, 311: 4365-4370. https://doi.org/10.1016/j.jcrysgro.2009.06.054
  50. Lee, S.W., and Choi, C.S. (2007) The correlation between organic matrices and biominerals (myostracal prism and folia) of the adult oyster shell, Crassostrea gigas. Micron, 38: 58-64. https://doi.org/10.1016/j.micron.2006.03.018
  51. Lee, S.W., and Choi, C.S. (2007) High-Rate Growth of Calcium Carbonate Crystal Using Soluble Protein from Diseased Oyster Shell. Crystal Growth & Design, 7: 1463-1468. https://doi.org/10.1021/cg0700420
  52. Lee, S.W., Gang, G., Lee, K.B., and Park, S.B. (2009) On synthesis of new-typed $SiO_2$ thin film using biomaterials. Micron, 40: 713-718. https://doi.org/10.1016/j.micron.2009.05.002
  53. Lee, S.W., Hong, S.M., and Choi, C.S. (2006) Characteristics of calcification processes in embryos and larvae of the pacific oyster, Crassostrea gigas. Bull. Mar. Sci., 78: 309-317.
  54. Lee, S.W., Kim, G.H., and Choi, C.S. (2008) Characteristic crystal orientation of folia in oyster shell, Crassostrea gigas. Materials Science and Engineering: C, 28: 258-263. https://doi.org/10.1016/j.msec.2007.01.001
  55. Lee, S.W., Kim, Y.M., Choi, H.S., Yang, J.M., and Choi, C.S. (2006) Primary structure of myostracal prism soluble protein (MPSP) in oyster shell, Crassostrea gigas. Protein J, 25: 288-294. https://doi.org/10.1007/s10930-006-9012-9
  56. Lee, S.W., Kim, Y.M., Kim, R.H., and Choi, C.S. (2008) Nano-structured biogenic calcite: a thermal and chemical approach to folia in oyster shell. Micron, 39: 380-386. https://doi.org/10.1016/j.micron.2007.03.006
  57. Lee, S.W., Lee, K.B., and Park, S.B. (2009) A new approach to the synthesis of functional thin films: hierarchical synthesis of $CaCO_3$ thin films and their transformation into patterned metal thin films. Micron, 40: 737-742. https://doi.org/10.1016/j.micron.2009.04.009
  58. Lee, S.W., Park, S.B., and Choi, C.S. (2008) On self-organized shell formation by bovine carbonic anhydrase II, and soluble protein extracted from regenerated shell. Micron, 39: 1228-1234. https://doi.org/10.1016/j.micron.2008.04.005
  59. Liao, S., Ngiam, M., Watari, F., Ramakrishna, S., and Chan, C.K. (2007) Systematic fabrication of nano-carbonated hydroxyapatite/collagen composites for biomimetic bone grafts. Bioinspir Biomim, 2: 37-41. https://doi.org/10.1088/1748-3182/2/3/001
  60. Lin, A., and Meyers, M.A. (2005) Growth and structure in abalone shell. Materials Science and Engineering A, 390: 27-41. https://doi.org/10.1016/j.msea.2004.06.072
  61. Lowenstam, H.A., and Weiner, S. (1989) On Biomineralization pp. 103-110. Oxford University Press. New York
  62. Mann, K., Weiss, I.M., Andre, S., Gabius, H.J., and Fritz, M. (2000) The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. Detection of a functional C-type lectin domain with galactose/mannose specificity. Eur J Biochem, 267: 5257-5264. https://doi.org/10.1046/j.1432-1327.2000.01602.x
  63. Mann, S. (1995) Biomineralization, the inorganic-organic interface, and crystal engineering. In: Sarikaya M, Aksay IA (eds) Biomimetics design and processing of materials. American Institute of Physics, AIP Press., pp 91-116
  64. Mann, S. (2001) Biomineralization principles and concepts in bioinorganic materials chemistry. Oxford University Press. New York
  65. Marin, F., Corstjens, P., de Gaulejac, B., de Vrind-De Jong, E., and Westbroek, P. (2000) Mucins and molluscan calcification. Molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, pteriomorphia). J Biol Chem, 275: 20667-20675. https://doi.org/10.1074/jbc.M003006200
  66. Marin, F., and Luquet, G. (2004) Molluscan shell proteins. Comptes Rendus Palevol, 3: 469-492. https://doi.org/10.1016/j.crpv.2004.07.009
  67. Marxen, J.C., Nimtz, M., Becker, W., and Mann, K. (2003) The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. Biochim Biophys Acta 1650: 92-98. https://doi.org/10.1016/S1570-9639(03)00203-6
  68. Medakovic, D. (2000) Carbonic anhydrase activity and biomineralization process in embryos, larvae and adult blue mussels Mytilus edulis L. Helgoland Marine Research, 54: 1-6. https://doi.org/10.1007/s101520050030
  69. Medakovic, D., Popovic, S., Grzeta, B., Plazonic, M., and Hrs-Brenko, M. (1997) X-ray diffraction study of calcification processes in embryos and larvae of the brooding oyster Ostrea edulis. Marine Biology, 129: 615-623. https://doi.org/10.1007/s002270050204
  70. Meldrum, N.U., and Roughton, F.J. (1933) Carbonic anhydrase. Its preparation and properties. J Physiol, 80: 113-142. https://doi.org/10.1113/jphysiol.1933.sp003077
  71. Michenfelder, M., Fu, G., Lawrence, C., Weaver, J.C., Wustman, B.A., Taranto, L., Evans, J.S., and Morse, D.E. (2003) Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains. Biopolymers, 70: 522-533. https://doi.org/10.1002/bip.10536
  72. Mirjafari, P., Asghari, K., and Mahinpey, N. (2007) Investigating the Application of Enzyme Carbonic Anhydrase for $CO_2$ Sequestration Purposes. Industrial & Engineering Chemistry Research, 46: 921-926. https://doi.org/10.1021/ie060287u
  73. Miyamoto, H., Miyashita, T., Okushima, M., Nakano, S., Morita, T., and Matsushiro, A. (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc. Natl. Acad. Sci. USA, 93: 9657-9660. https://doi.org/10.1073/pnas.93.18.9657
  74. Miyamoto, H., Yano, M., and Miyashita, T. (2003) Similarities in the structure of nacrein, the shell-matrix protein, in a bivalve and a gastropod. J. Mollus. Stud. 69: 87-89. https://doi.org/10.1093/mollus/69.1.87
  75. Miyashita, T., Takagi, R., Okushima, M., Nakano, S., Miyamoto, H., Nishikawa, E., and Matsushiro, A. (2000) Complementary DNA Cloning and Characterization of Pearlin, a New Class of Matrix Protein in the Nacreous Layer of Oyster Pearls. Mar Biotechnol (NY), 2: 409-418.
  76. Mount, A.S., Wheeler, A.P., Paradkar, R.P., and Snider, D. (2004) Hemocyte-mediated shell mineralization in the eastern oyster. Science 304: 297-300. https://doi.org/10.1126/science.1090506
  77. Nancollas, G.H., and Sawada, K. (1982) Formation of Scales of Calcium Carbonate Polymorphs: The Influence of Magnesium Ion and Inhibitors. Journal of Petroleum Technology, 34: 645-652. https://doi.org/10.2118/8992-PA
  78. Newell-Roger, I.E., and Langdon, C.J. (1996) The Eastern Oyster. In: Kennedy VS, Newell-Roger IE, Eble AE (eds) Crassostrea virginica. Maryland Sea Grant College, College Park. , pp 185-229
  79. Odum, H.T. (1957) Biogeochemical Deposition of Strontium. Inst. Mar. Sci., 4: 38-114.
  80. Park, R.J., and Meldrum, F.C. (2002) Synthesis of single crystals of calcite with complex morphologies. Adv. Mater., 14: 1167-1169. https://doi.org/10.1002/1521-4095(20020816)14:16<1167::AID-ADMA1167>3.0.CO;2-X
  81. Park, W.K., Ko, S.-J., Lee, S.W., Cho, K.-H., Ahn, J.-W., and Han, C. (2008) Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate. Journal of Crystal Growth, 310: 2593-2601. https://doi.org/10.1016/j.jcrysgro.2008.01.023
  82. Pokroy, B., Quintana, J.P., Caspi, E.N., Berner, A., and Zolotoyabko, E. (2004) Anisotropic lattice distortions in biogenic aragonite. Nat Mater, 3: 900-902. https://doi.org/10.1038/nmat1263
  83. Politi, Y., Arad, T., Klein, E., Weiner, S., and Addadi, L. (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science, 306: 1161-1164. https://doi.org/10.1126/science.1102289
  84. Samata, T., Hayashi, N., Kono, M., Hasegawa, K., Horita, C., and Akera, S. (1999) A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett, 462: 225-229. https://doi.org/10.1016/S0014-5793(99)01387-3
  85. Sarashina, I., and Endo, K. (1998) Primary structure of a soluble matrix protein of scallop shell; implications for calcium carbonate biomineralization. American Mineralogist, 83: 1510-1515. https://doi.org/10.2138/am-1998-11-1239
  86. Sarashina, I., and Endo, K. (2001) The complete primary structure of molluscan shell protein 1 (MSP-1), an acidic glycoprotein in the shell matrix of the scallop Patinopecten yessoensis. Mar Biotechnol (NY), 3: 362-369. https://doi.org/10.1007/s10126-001-0013-6
  87. Sarikaya, M., and Aksay, I.A. (1992) Nacre of Abalone Shell: a Natural Multifunctional Nanolaminated Ceramic-Polymer Composite Material. . In: C. S (ed) Results and Problems in Cell Differentiation in Biopolymers. Springer and Verlag, Amsterdam, pp 1-25
  88. Schanek, W.J., and Yoshimura, M. (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res., 13: 94-117. https://doi.org/10.1557/JMR.1998.0015
  89. Sethmann, I., and Worheide, G. (2008) Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. Micron 39: 209-228. https://doi.org/10.1016/j.micron.2007.01.006
  90. Shen, X., Belcher, A.M., Hansma, P.K., Stucky, G.D., and Morse, D.E. (1997) Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J Biol Chem 272: 32472-32481. https://doi.org/10.1074/jbc.272.51.32472
  91. Shi, C., Dai, Y., Liu, Q., Xie, Y., and Xu, X. (2003) The FT-IR spectrometric analysis of the changes of polyphenol oxidase II secondary structure. Journal of Molecular Structure 644: 139-144. https://doi.org/10.1016/S0022-2860(02)00471-4
  92. Simkiss, K., and Wilbur, K.M. (1989) Biomineralizationcell biology and mineral deposition. New York
  93. Stenzel, H.B. (1964) Oysters: Composition of the Larval Shell. Science, 145: 155-156. https://doi.org/10.1126/science.145.3628.155
  94. Stone, H. (1962) The values of the parameters of the component bands, obtained as the result of the deconvolution. J. Opt. Soc. Am., 52: 998-1003. https://doi.org/10.1364/JOSA.52.000998
  95. Sudo, S., Fujikawa, T., Nagakura, T., Ohkubo, T., Sakaguchi, K., Tanaka, M., Nakashima, K., and Takahashi, T. (1997) Structures of mollusc shell framework proteins. Nature, 387: 563-564.
  96. Tegethoff , F.W. (2001) Calcium carbonate from the Cretaceous Period into the 21st century. Birkhauser Verlag. Berlin
  97. Trask, R.S., Williams, H.R., and Bond, I.P. (2007) Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir Biomim, 2: P1-9. https://doi.org/10.1088/1748-3182/2/1/001
  98. Tsukamoto, D., Sarashina, I., and Endo, K. (2004) Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem Biophys Res Commun, 320: 1175-1180. https://doi.org/10.1016/j.bbrc.2004.06.072
  99. Vincent, J.F., Bogatyreva, O.A., Bogatyrev, N.R., Bowyer, A., and Pahl, A.K. (2006) Biomimetics: its practice and theory. J R Soc Interface, 3: 471-482. https://doi.org/10.1098/rsif.2006.0127
  100. Wang, R.Z., Addadi, L., and Weiner, S. (1997) Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function. Philos Trans R Soc Lond B Biol Sci, 352: 469-480. https://doi.org/10.1098/rstb.1997.0034
  101. Weiner, S., and Dove, P.M. (2003) An Overview of Biomineralization Processes and the Problem of the Vital Effect. Reviews in Mineralogy and Geochemistry, 54: 1-29. https://doi.org/10.2113/0540001
  102. Weiner, S., and Traub, W. (1980) X-ray diffraction study of the insoluble organic matrix of mollusk shells. FEBS Lett., 111: 311-316. https://doi.org/10.1016/0014-5793(80)80817-9
  103. Weiss, I.M., Gohring, W., Fritz, M., and Mann, K. (2001) Perlustrin, a Haliotis laevigata (Abalone) Nacre Protein, Is Homologous to the Insulin-like Growth Factor Binding Protein N-Terminal Module of Vertebrates. Biochemical and Biophysical Research Communications, 285: 244-249. https://doi.org/10.1006/bbrc.2001.5170
  104. Weiss, I.M., Tuross, N., Addadi, L., and Weiner, S. (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. Journal of Experimental Zoology, 293: 478-491. https://doi.org/10.1002/jez.90004
  105. Wilbur, K.M. (1972) Shell formation in mollusks. In: Florkin M, Scheer BT (eds) Chemical Zoology, Vol. VII. Academic Press, New York and London, pp 103-142
  106. Wilt, F.H., and Killian, C.E. (2008) What genes and genomes tell us about calcium carbonate biomineralization. In: Sigel A, Sigel H, Sigel RKO (eds) Metal Ions in Life Sciences John Wiely & Sons, pp 37-69
  107. Xiaodong, L., and Patrick, N. (2004) Micro/ nanomechanical characterization of a natural nanocomposite material-the shell of Pectinidae. Nanotechnology, 15: 211. https://doi.org/10.1088/0957-4484/15/1/038
  108. Zhang, Y., Xie, L., Meng, Q., Jiang, T., Pu, R., Chen, L., and Zhang, R. (2003) A novel matrix protein participating in the nacre framework formation of pearl oyster, Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol, 135: 565-573. https://doi.org/10.1016/S1096-4959(03)00138-6