• Title/Summary/Keyword: 생체금속

Search Result 179, Processing Time 0.024 seconds

Fabrication and Biomaterial Characteristics of HA added Ti-Nb-HA Composite Fabricated by Rapid Sintering (급속소결에 의한 HA가 첨가된 Ti-Nb-HA 복합재료의 제조 및 생체재료 특성)

  • Woo, Kee Do;Kim, Sang Hyck;Kim, Ji Young;Park, Sang Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.86-91
    • /
    • 2012
  • Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent biocompatibility, corrosion resistance and mechanical properties. However, V-free titanium alloys such as Ti-6%Al-7%Nb and Ti-5%Al-2.5%Fe have recently been developed because of the toxicity of V. Hydroxyapatite (HA) is used as a coating material on Ti or Ti biomaterials due to its good biocompatibility. However, HA coated on Ti alloy causes a problem for tissue by peeling off during usage. Therefore, such peeling off during long time usage can be suppressed by adding HA in Ti or Ti alloy composites. The aim of this study was to manufacture an ultra fine grained (UFG) Ti-Nb-HA bulk alloy, which is usually difficult to fabricate using melting and casting technology, by rapid sintering process using high energy mechanical milled (HEMM) powder.

Fabrication and Characteristics of Ti-Nb-Mo-CPP Composite Fabricated by High Energy Mechanical Milling and Spark Plasma Sintering (고에너지밀링과 스파크플라즈마소결을 이용한 Ti-Nb-Mo-CPP 생체복합재료의 제조 및 특성)

  • Park, Sang-Hoon;Woo, Kee-Do;Kim, Ji-Young;Kim, Sang-Mi
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.469-475
    • /
    • 2012
  • A high-energy mechanical milling (HEMM) process was introduced to improve sinter-ability, and rapid sintering of spark plasma sintering (SPS) under pressure was used to make ultra fine grain (UFG) of Ti-Nb-Mo-CPP composites, which have bio-attractive elements, for increasing mechanical properties. Ti-Nb-Mo-CPP composites were successfully fabricated by SPS at $1000^{\circ}C$ within 5 minutes under 70 MPa using HEMMed powders. The Vickers hardness of the composites increased with increased milling time and addition of CPP contents. Biocompatibility and corrosion resistance of the Ti-Nb-Mo alloys were improved by addition of CPP, and the Ti-35%Nb-10%Mo-10%CPP alloy had better biocompatibility and corrosion resistance than the Ti-6Al-4V ELI alloy.

Miscibility Gap in Cu-Zr-Ag Alloy System and its Effect on the Structure and Plasticity of Metallic Glass (Cu-Zr-Ag계 비정질 합금의 불혼화 영역이 구조 및 소성에 미치는 영향)

  • Lee, Jin-ju;Park, Kyoung-Won;Kim, Do-Hyang;Fleury, Eric
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.930-936
    • /
    • 2011
  • In the present study, we show that the addition of Ag, an element having a positive enthalpy of mixing with Cu in the liquid state, enables the simultaneous enhancement of the glass forming ability and the plasticity in Cu-Zr-Ag bulk metallic glasses (BMGs). Rods of 4 mm diameter could be prepared with a fully amorphous structure and values of plastic strain up to 18% were measured under a compression mode for compositions around $Cu_{42.5}Zr_{47.5}Ag_{10}$. The possible role of Ag in the change of the atomic structure and the enhancement of the plastic strain in the ternary Cu-Zr-Ag BMGs is discussed based on analyses from transmission electron microscopy and EXAFS (extended X-ray absorption fine structure).

Effect of Surface Treatment on Bioactivity of Ti-Ni Shape Memory Alloys (Ti-Ni형상기억합금의 생체활성에 미치는 표면처리의 영향)

  • Choi, Mi-Seon;Nam, Tae-Hyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.12
    • /
    • pp.881-886
    • /
    • 2009
  • Research into the replacement of injured systems and tissue in the human body is advancing rapidly. Recently, Ti-Ni shape memory alloys have shown excellent biofunctionality related to their shape memory effect and superelasticity. In this study, the effect of an acid or an alkali treatment on the bioactivity in 49Ti-Ni and 51.5Ti-48.5Ni alloys is investigated in an effort to utilize Ti-Ni alloy as a biomaterial. In addition, the biocompatibility in a SBF solution is assessed through in vitro testing. A porous surface was formed on the surface of both alloys after a chemical treatment. According to the in vitro test, apatite formed on the surfaces of both alloys. The forming rate of apatite in the Ti-rich alloy was faster that in the Ni-rich alloy. The formation of apatite provided proof of the bioactivity of the Ti-Ni alloy. A small quantity of Ni was eluted at the initial stage, whereas Ni was not found for 12 days in the Ti-rich alloy and for 8 days in the Ni-rich alloy. In the case of the treated 51.5Ti-Ni alloy, the shape memory property was worsened but the biocompatibility was improved.

Hydrodynamic Characteristics of Self-expandable Graft Stents in Steady Flow (정상유동에서 자가팽창성 그래프트 스텐트의 수력학적 특성)

  • 이홍철;김철생;박복춘;박복춘
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • This experimental study is aimed at evaluating the hydrodynamic performance of newly designed self-expandable graft stents under steady flow condition. Two graft stents with different coating materials and a bare TiNi metallic stent for comparison test were used in the experiment. Pressure variation and velocity distribution at the upstream and downstream of the stents were measured at flow rates of 5, 10, and 15 l/min, respectively. Pressure loss due to insertion of the stent increased with increasing flow rate exponentially as expected. At a flow rate of 15 l/min, pressure loss of Polyure-thane(PU)-coated graft stent was 6 times higher than that of TiNi metallic stent, while the pressure loss of a porous Polytetrafluoroethylene(PTFE)-coated graft stent was comparable to a bare TiNi metallic stent. Velocity profiles of the porous PTFE-coated graft stent were similar to those of a bare TiNi metallic stent regardless of flow rate. Furthermore, the velocity profile of PU-coated graft stent revealed an asymmetrical and relatively low central velocity at a higher flow rate than 10 1/min, expecially, where the effects resulted in increases of wall shear stress and normal stress. The worse hydrodynamic behavior of PU-coated graft stent than the other two stents might be attributed to formation of folds due to poor flexibility of coated material when inserting the graft stent into the pipe with a more smaller size, which later gave rise non-symmetry of flow area, increase of surface roughness and jet flow via the crevice between the stent and cylinder wall.

Finite Element Analysis for the Contact Stress of Ultra-high Molecular Weight Polyethylene in Total Knee Arthroplasty (전 슬관절 치환 성형술에 사용되는 초고분자량 폴리에틸렌 삽입물의 접촉응력에 관한 유한요소해석)

  • Jo, Cheol-Hyeong;Choe, Jae-Bong;Choe, Gwi-Won;Yun, Gang-Seop;Gang, Seung-Baek
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 1999
  • Because of bone resorption, wear of ultra-high molecular weight polyethylene(UHMWPE) in total knee arthroplasty has been recognized as a major factor in long-term failure of knee implant. The surface damage and the following harmful wear debris of UHMWPE is largely related to contact stress. Most of the previous studies focused on the contact condition only at the articulating surface of UHMWPE. Recently, contact stress at the metal-backing interface has been implicated as one of major factors in UHMWPE wear. Therefore, the purpose of the is study is to investigate the effect of the contact stress for different thickness, conformity friction coefficient, and flexion degree of the UHMWPE component in total knee system, considering the contact conditions at both interfaces. In this study, a two-dimensional non-linear plane strain finite element model was developed. The results showed that the maximum value of von-Mises stress occurred below the articulating surface and the contact stress was lower for the more conforming models. All-polyethylene component showed lower stress distribution than the metal-backed component. With increased friction coefficient on the tibiofemoral contact surface, the maximum shear stress increased about twofold.

  • PDF

Problems of Metallic Dental Instruments for Dental Use (치과에서 사용되는 금속치과기구의 임상적용시 문제)

  • 최한철
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.15-15
    • /
    • 2003
  • 치과재료에 사용되는 금속재료는 주로 스테인리스강, 타이타늄, Ni-Ti, Co-Cr등과 같은 특수합금이 주로 사용되고 있다. 이들 재료는 치과 보철물과 교정재료 및 충전재료로 주로 사용되고 있으며 그 외 치과에서 사용되는 기기나 기구에도 많이 활용되고 있다. 특히 치과 보철물을 사용하여 치료를 원하는 환자가 최근에 급격히 증가하면서 임플란트 고정체와 나사 등을 이용한 치료법의 연구와 개발이 필요하게 되어 세계적으로 연구와 투자가 활발히 진행되고 있다. 그러나 재료의 설계나 합금의 설계 및 제품의 설계상의 문제로 인하여 생체조직과 결합하는데 많은 문제점이 임상적으로 발생되고 있다. 즉 임플란트 표면의 생체적합성부여, 고정체와의 결합시 파절이나 풀림현상, 골에 고정체로 사용하는 나사의 강도와 내마모성문제 등이 개선되어야 할 문제점으로 남아있다. 또한 총의치에 사용되는 자석 어태치먼트의erosion-corrosion문제, 교정선의 탄성 과 마모저항문제 등은 앞으로 계속적인 연구를 행하여야할 과제로 남아있다. 또한 국소의치에서 사용되는 frame은 정밀주조법을 통하여 제조하며 주조상의 결함 등으로 인한 클라스프의 파절 문제점이 발생되고 있다. 따라서 본 연구에서는 치과재료로 사용되는 임플란트 고정체, 나사, 교정용 선등의 문제점을 고찰하고, 지금까지 이루어진 연구를 중심으로 최적의 개선 조건을 찾고자하였다. 최근첨단소재 및 금속재료를 사용하여 치과재료 합금을 설계할 수 있는 연구가 활발히 진행된다면 수입에 의존하고 있는 고가의 치과재료를 값이 싼 고성능의 제품으로 대체할 수 있는 효과가 클 것으로 생각된다.>$\rho$$\sub$0/=1.8 %. As t$\sub$Co/ increases, a transition from the regime of co-existence of superparamagnetic and ferromagnetic behaviors to ferromagnetic behavior was observed. Tunneling barrier called "decay length for tunneling" for the films having the thickness of Co layer from 1.4 to 1.6 nm was measured to be ranged from 0.004 to 0.021 ${\AA}$$\^$-1/.문에 기업간 관계를 연구하는 측면에서는 탐험적 연구성격이 강하다. 더 나아가 본 산업의 주된 연구가 질적이고 기업내부만을 연구했던 것에 비교하면 시초적이라고 할 수 있다. 또한 관계마케팅, CRM 등의 이론적 배경이 되고 있는 신뢰와 결속의 중요성이 재확인하는 결과도 의의라고 할 수 있다. 그리고 신뢰는 양사 간의 상호관계에서 조성될 수 있는 특성을 가진 반면, 결속은 계약관계 초기단계에서 성문화하고 규정화 할 수 있는 변수의 성격이 강하다고 할 수가 있다. 본 연구는 복잡한 기업간 관계를 지나치게 협력적 측면에서만 규명했기 때문에 많은 측면을 간과할 가능성이 있다. 또한 방법론적으로 일방향의 시각만을 고려했고, 횡단적 조사를 통하고 국내의 한 서비스제공업체와 관련이 있는 컨텐츠 공급파트너

  • PDF

Corrosion Characteristics of Titanium Alloys for Medical Implant (생체용 Ti 합금의 부식특성)

  • Han, Jun-Hyun;Lee, Kyu Hwan;Shin, Myung Chul
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.192-197
    • /
    • 1996
  • The purpose of this study is to develop new V-free Ti alloys which have good mechanical properties and corrosion resistance. Although pure Ti has an excellent biocompatibility and corrosion resistance in body, it is inferior to Ti alloys in mechanical properties, and Ti-6Al-4V which has good mechanical properties was known to be cytotoxic due to the alloying element V. New Ti based alloys which do not contain the toxic metallic components were developed by the alloy design technique. Their corrosion and mechanical characteristics were compared with pure Ti and Ti-6Al-4V in this study. The results showed that Ti-20Zr-3Nb-3Ta-0.2Pd-1In and Ti-5AI-4Zr-2.5Mo exhibit good mechanical oroperties and an excellent corrosion resistance in 0.9% NaCl solution.

  • PDF

Wirelessly Driven Cellulose Electro-Active Paper Actuator: Application Research (원격구동 셀룰로오스 종이 작동기의 응용연구)

  • Kim, Jae-Hwan;Yang, Sang-Yeol;Jang, Sang-Dong;Ko, Hyun-U;Mun, Sung-Cheol;Kim, Dong-Gu;Kang, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.539-543
    • /
    • 2012
  • Cellulose Electro-Active Paper (EAPap) is attractive as a biomimetic actuator because of its merits: it is lightweight, operates in dry conditions, has a large displacement output, has a low actuation voltage, and has low power consumption. Cellulose is regenerated so as to align its microfibrils, which results in a piezoelectric paper. When chemically bonded and mixed with carbon nanotubes, titanium oxide, zinc oxide, tin oxides, the cellulose EAPap can be used as a hybrid nanocomposite that has versatile properties and that can meet the requirements of many application devices. This paper presents trends in recent research on the cellulose EAPap, mainly on material preparation and its use in devices, including biosensors, chemical sensors, flexible transistors, and actuators. This paper also explains wirelessly driving technology for the cellulose EAPap, which is attractive for use in biomimetic robotics and micro-aerial vehicles.

Do Paneth Cells Regulate the Zinc Body Burden? (Zinc 대사와 관련된 Paneth 세포활성의 변화에 관한 조직화학적 연구)

  • Jo, Seung-Mook;Kim, Sung-Jun;Park, Seung-Kook;Kang, Tae-Cheon;Won, Moo-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.357-365
    • /
    • 2000
  • Paneth cells have been suggested to contribute to the elimination of excess metals into the intestinal lumen. The purpose of this study wat to investigate the changes of the zinc pools in rats subjected to functional loading with zinc salt by mean of both light and electron microscopical autometallography (AMG). Wistar rats 4 were administrated with zinc chloride (20 mg/kg body weight) intraperitoneally dissolved in 1 ml distilled water. The control group received 1 ml saline IP. After further one hour the animals were transcardially perfused with 0.4% sodium sulphide dissolved in 0.1 M PB fellowed by 3% glutaraldehyde solution for 10 minutes. Pieces of ileum were frozen with solid $CO_2$ and sectioned on a cryostat. The sections $(20{\mu}m)$ were autometallographically developed. Sections selected for EM were reembedded on top of a blank Epon block, from which ultrathin sections (100 nm) were cut. The ultrathin sections were double stained with uranyl acetate (30 min) and lead citrate (5 min), then examined under electron microscope. Studies of comparable sections from control and zinc loaded animals with the AMG selenium method gave quite different results. The control animals demonstrated a weakly positive staining in the cytoplasm of the Paneth cells. In the electron microscope the AMG silver grains were found to be located in the cytoplasm, while the electron dense secretary granules and other cell organelles were void of staining. Few AMG grains were located at the apical surface of the Paneth cells. In sections from zinc loaded rats, the AMG grains were seen in abundance in the lumen of the Lieberkuhn crypts at light microscopic levels. At EM levels the zinc revealing silver grains were located in the cytoplasm as in the controls, but much more AMG grains were shifted into the secretary granules. Furthermore, profound AMG grains were found in the lumen of the crypts and surrounding vessels. And a few grains were seen in the endothelium. The AMG technique demonstrated a pattern of AMG grains in the Paneth cells that strongly suggests a transport of zinc ions through these cells.

  • PDF