• Title/Summary/Keyword: 생지화학 반응

Search Result 37, Processing Time 0.025 seconds

습지의 생지화학적 환경에 미치는 침수식물의 영향

  • Lee, Yong-Min;Lee, Seok-Mo;Seong, Gi-Jun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.191-192
    • /
    • 2008
  • 본 연구에서는 침수식물이 습지의 생지화학적 환경에 미치는 영향을 조사하고자 하였다. 침수식물이 없는 대조군보다 침수식물이 밀생한 습지반응조에서 수체내 용존산소의 농도 변화와 pH가 크게 나타나, 침수식물이 습지에서 수체와 저질의 산화-환원조건을 변화시켜, 질산화나 탈질과 관련된 습지의 생지화학적 반응에 영향을 줄 수 있음을 보여주었다.

  • PDF

가막만 해수/퇴적물 계면에서 유기탄소, 질소, 인의 생지화학적 순환

  • 김귀영;이재성;김성수;정래홍
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.10a
    • /
    • pp.219-220
    • /
    • 2001
  • 연안퇴적물로 유입되는 유기물은 수중과 해수/퇴적물 계면에서 다양한 생지화학적 반응을 거치면서 재순환되며 일부는 퇴적물로 제거된다. 본 연구는 가막만에서 해역의 특성을 반영하는 대표적 환경인 소호지역, 굴양식장, 어류 양식장 그리고 비교적 교란이 없으리라고 생각되는 지역을 선정하여 이 지역 상부퇴적물에서 일어나는 유기탄소와 암모니아 질소, 인산인의 생지화학적 순환 및 각 성분의 플럭스를 추정하고자 한다. (중략)

  • PDF

Review of the Role of Land Surface in Global Climate Change (기후변화에서 지표환경의 역할에 대한 고찰)

  • Kim, Seong-Joong
    • The Korean Journal of Quaternary Research
    • /
    • v.23 no.1
    • /
    • pp.42-53
    • /
    • 2009
  • In response to the abrupt climate change in recent years, atmosphere, ocean and cryosphere are reported to be altered. In addition to these changes, the land surface is also gradually changing and its impact on the global climate may not be negligible. The land surface change impacts the global climate via two ways, the biogeochemical and biophysical feedbacks. The biogeochemcial change in the land surface modifies the atmospheric trace-gas concentrations through a change in photo synthesis, while biophycal changes of the land surface alters the surface albedo, which influences the amount of the short wave radiative heat fluxes. There are many examples in the past that the change in land surface greatly influences the global climate change. The recent IPCC report has suggested that the climate change will occur rather abrubtly in the near future. In order to predict the future climate accurately, the impact of the land surface change is fully considered.

  • PDF

Experimental Study of the mechanism of methane generation under various organic conditions on Lake or Reservoir (호소 환경 조건에 따른 메탄 발생 기작 정량화 실험 연구)

  • Bang, Young Jun;Lee, Sung Woo;Kim, Dong Hyun;Lee, Seong Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.173-173
    • /
    • 2022
  • 유기 퇴적 오염물은 다양한 형태로 호소 바닥에 축적되어 호소 환경 및 생태계에 악영향을 미치고 있으며 메탄가스와 같은 온실가스의 발생을 유발한다. 또한, 수력 산업, 관개, 이·치수 등 다양한 목적에 의해 수체의 형성이 활발하게 이루어지면서 하천 및 호소에 의한 탄소유출을 전지구적 탄소순환에 적극적으로 포함시켜야 한다는 필요성이 증가하고 있다. 따라서 하천 및 호소에서 발생하는 다양한 생지화학적 반응에 의한 메탄 발생 메커니즘 파악은 유역의 중요한 환경평가 지표를 나타내며 탄소 순환을 이해하는데 매우 중요하다. 수온, 수심, 유기물 조건에 따른 하천 및 호소의 메탄 발생을 분석한 연구들이 선행되었으나 생지화학적 특성을 정리하고 이에 따른메탄 발생을 정량화한 연구들은 거의 없는 상황이다. 본 연구는 호소 내 메탄을 발생시키는 기작을 판별하기 위해 수온과 호소 환경과 유사한 TOC(총유기탄소)와 TP(총인) 조건과 같은 유기물 조건을 설정하여 BMP Test를 수행하였다. 반응수조에서 발생한 가스를 포집한 후 GC(Gas Chromatograpghy) 분석을 통해 메탄 생성량을 산출하였고, 유기물 조건에 따라 이론적인 메탄 생성량 대비 실제 발생한 메탄 생성량을 나타내는 생분해도를 산출하여 호소 환경별 주요 기작에 따른 가스 발생을 정량화 하였다. 실험 결과 수온에 가장 큰 영향을 받았으며, 수온에 따라 TP, TOC 순으로 메탄 발생의 영향성을 확인하였다. 향후에는 호소 환경에서의 유기물 조건을 반영하기 위해 입도비, 점착성/ 비점착성 조건, 수체의 높이 조건을 포함한 추가 실험을 수행하고 메탄수율을 정량화하여 호소 내 유기퇴적물에 대한 생지화학적 및 수환경 영향 평가 기법 개발이 가능할 것으로 기대한다.

  • PDF

Partial Correlation between Hydrological, Geochemical and Microbiological Processes in Groundwater-stream Water Mixing Zone in a Rural Area (농촌지역 지하수-지표수 혼합구간에서 수리, 지구화학 및 생물학적 기작 사이의 편상관분석)

  • Kim, Heejung;Lee, Jin-Yong;Lee, Kang-Kun
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.489-502
    • /
    • 2012
  • Biogeochemical processes in groundwater-stream water mixing zone are recently of great interest because biodegradation and natural attenuation of aquatic contaminants may occur through the processes. The objectives of this study are to investigate the hydrologic and biogeochemical processes at the groundwater-stream water mixing zone through which surface water-driven nitrate may be naturally attenuated, and to examine the effect of the vertical flow exchange flux on biogeochemical processes using correlation analysis. To examine the direction of vertical water flow in the zone, vertical hydraulic gradients were measured at several depths using mini-piezometers. Microbial populations in soil samples of the zone were also analyzed by means of the polymerase chain reaction (PCR) and Cloning methods. In addition, partial correlations among vertical flow exchange, nitrate concentration and microbial activity was investigated to examine their mutual interaction. The results showed the significant interaction among the three parameters, resulting in natural attenuation of nitrate. This study showed an example of the biogeochemical fuction of groundwater-stream water mixing zone, which can be predictable from the examination of the interaction among microbial activities, concentration of contamination and vertical flow exchange flux. temperature show a significant difference in adjacent streambed, Also, the results shows that distribution of temperature was more affected by groundwater direction than intensity of flux.

Biogeochemical Effects of Hydrogen Gas on the Behaviors of Adsorption and Precipitation of Groundwater-Dissolved Uranium (지하수 용존 우라늄의 수착 및 침전 거동에서 수소 가스의 생지화학적 영향)

  • Lee, Seung Yeop;Lee, Jae Kwang;Seo, Hyo-Jin;Baik, Min Hoon
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • There would be a possibility of uranium contamination around the nuclear power plants and the underground waste disposal sites, where the uranium could further migrate and diffuse to some distant places by groundwater. It is necessary to understand the biogeochemical behaviors of uranium in underground environments to effectively control the migration and diffusion of uranium. In general, various kinds of microbes are living in soils and geological media where the activity of microbes may be closely connected with the redox reaction of nuclides resulting in the changes of their solubility. We investigated the adsorption and precipitation behaviors of dissolved uranium on some solid materials using hydrogen gas as an electron donor instead of organic matters. Although the effect of hydrogen gas did not appear in a batch experiment that used granite as a solid material, there occurred a reduction of uranium concentration by 5~8% due to hydrogen in an experiment using bentonite. This result indicates that some indigenous bacteria in the bentonite that have utilized hydrogen as the electron donor affected the behavior (reduction) of uranium. In addition, the bentonite bacteria have showed their strong tolerance against a given high temperature and radioactivity of a specific waste environment, suggesting that the nuclear-biogeochemical reaction may be one of main mechanisms if the natural bentonite is used as a buffer material for the disposal site in the future.

Review of Microbially Mediated Smectite-illite Reaction (생지화학적 스멕타이트-일라이트 반응에 관한 고찰)

  • Kim, Jin-Wook
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.395-401
    • /
    • 2009
  • The smectite-illite (SI) reaction is a ubiquitous process in siliciclastic sedimentary environments. For the last 4 decades the importance of smectite to illite (S-I) reaction was described in research papers and reports, as the degree of the (S-I) reaction, termed "smectite illitization", is linked to the exploration of hydrocarbons, and geochemical/petrophysical indicators. The S-I transformation has been thought that the reaction, explained either by layer-by-layer mechanism in the solid state or dissolution/reprecipitation process, was entirely abiotic and to require burial, heat, and time to proceed, however few studies have taken into account the bacterial activity. Recent laboratory studies showed evidence suggesting that the structural ferric iron (Fe(III)) in clay minerals can be reduced by microbial activity and the role of microorganisms is to link organic matter oxidation to metal reduction, resulting in the S-I transformation. In abiotic systems, elevated temperatures are typically used in laboratory experiments to accelerate the smectite to illite reaction in order to compensate for a long geological time in nature. However, in biotic systems, bacteria may catalyze the reaction and elevated temperature or prolonged time may not be necessary. Despite the important role of microbe in S-I reaction, factors that control the reaction mechanism are not clearly addressed yet. This paper, therefore, overviews the current status of microbially mediated smectite-to-illite reaction studies and characterization techniques.

Corrosive Characteristics of Metal Materials by a Sulfate-reducing Bacterium (황산염환원미생물에 의한 금속재료의 부식 특성)

  • Lee, Seung Yeop;Jeong, Jongtae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.219-228
    • /
    • 2013
  • To understand characteristics of biogeochemical corrosion for the metal canisters that usually contain the radioactive wastes for a long-term period below the ground, some metal materials consisting of cast iron and copper were reacted for 3 months with D. desulfuricans, a sulfate-reducing bacterium, under a reducing condition. During the experiment, concentrations of dissolved metal ions were periodically measured, and then metal specimen and surface secondary products were examined using the electron microscopy to know the chemical and mineralogical changes of the original metal samples. The metal corrosion was not noticeable at the absence of D. desulfuricans, but it was relatively greater at the presence of the bacterium. In our experiment, darkish metal sulfides such as mackinawite and copper sulfide were the final products of biogeochemical metal corrosion, and they were easily scaled off the original specimen and suspended as colloids. For the copper specimen, in particular, there appeared an accelerated corrosion of copper in the presence of dissolved iron and bacteria in solution, probably due to a weakening of copper-copper binding caused by a growth of other phase, iron sulfide, on the copper surface.

Quantitative Determination of Fe-oxidation State by Electron Energy Loss Spectroscopy (EELS) (전자에너지 손실분광 분석법을 이용한 정량적 철산화수 측정)

  • Yang, Ki-Ho;Kim, Jin-Wook
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.189-194
    • /
    • 2012
  • The consequences of microbe-mineral interaction often resulted in the chemical, structural modification, or both in the biologically induced mineral. It is inevitable to utilize the high powered resolution of electron microscopy to investigate the mechanism of biogenic mineral transformation at nano-scale. The applications of transmission electron microscopy (TEM) capable of electron energy loss spectroscopy (EELS) to the study of microbe-mineral interaction were demonstrated for two examples: 1) biogenic illite formation associated with structural Fe(III) reduction in nontronite by Fereducing bacteria; 2) siderite phase formation induced by microbial Fe(III) reduction in magnetite. In particular, quantification of the changes in Fe-oxidation state at nanoscale is essential to understand the dynamic modification of minerals resulted from microbial Fe reduction. The procedure of EELS acquisition and advantages of EELS techniques were discussed.