• Title/Summary/Keyword: 생지화학반응

Search Result 37, Processing Time 0.026 seconds

Seawater N/P ratio of the East Sea (동해 해수의 질소:인의 비)

  • LEE, TONGSUP;RHO, TAE-KEUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.4
    • /
    • pp.199-205
    • /
    • 2015
  • Nitrogen and phosphorus are the limiting elements for growth of phytoplankton, which is a major primary producer of marine ecosystem. Incidentally the stoichiometry of N/P of ocean waters, measured by the (nitrate + nitrite)/phosphate ratio converges to a constant of 16. This characteristic ratio has been used widely for the understanding the ecosystem dynamics and biogeochemical cycles in the ocean. In the East Sea, several key papers were issued in recent years regarding the climate change and its impact on ecosystem dynamic and biogeochemical cycles using N/P ratio because the East Sea is a "miniature ocean" having her own meridional overturning circulation with the appropriate responding time and excellent accessibility. However, cited N/P values are different by authors that we tried to propose a single representative value by reanalyzing the historical nutrient data. We present N/P of the East Sea as $12.7{\pm}0.1$ for the year 2000. The ratio reveals a remarkable consistency for waters exceeding 300m depth (below the seasonal thermocline). We recommend to use this value in the future studies and hope to minimize confusion for understanding ecosystem response and biogeochemical cycles in relation to future climate change until new N/P value is established from future studies.

A Biogeochemical Study of Heavy Metal Leaching from Coal Fly Ash Disposed in Yeongdong Coal-Fired Power Plant (영동화력발전소에서 방출되는 석탄회로부터 박테리아 활동에 따른 생지화학적 연구)

  • Chung, Duk-Ho;Cho, Kyu-Seong;Park, Kyeong-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.2
    • /
    • pp.170-179
    • /
    • 2011
  • Fly ashes derived from coal fired power plants have unique chemical and mineralogical characteristics. The objective of this research was to study how indigenous bacteria affected heavy metal leaching in fly ash slurry during the fly ash-seawater interactions in the ash pond located in Yeongdong seashore, Korea. The in-situ pH of ash pond seawater was 6.3-8.5. For this study, three sites of the ash pond were chosen to collect a sample of fly ash slurry. Three samples that had a mix of fly ash (0.4 L) and seawater (1.6 L) were collected at each site. First sample was autoclaved ($120^{\circ}C$, 2.5 atm), second one was inoculated with glucose to stimulate the microbial activity, and the last sample was kept in the natural condition. Compared with other samples including autoclaved and natural samples, the glucose added sample showed sharp increase in its alkalinity after 15 days, cation concentration change such as Ca, Mg, and K seemed to increase in early stage, and then decrease 15 days later in slurry solution of glucose added sample, and a possibly considerable decrease in $SO_4^{2-}$ in the fly ash slurry samples when glucose was added to stimulate the microbial activity. Geochemical data of this study is likely to be related to the activity of bacteria at the ash pond. The result may be used to understand about the characteristic of bacteria.

Variations of DOC and Phenolics in Pore-water of Peatlands (이탄습지 공극수내 용존유기탄소와 페놀계열 물질의 변화도)

  • Freeman, Chris;Kim, Seon-Young;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.306-311
    • /
    • 2002
  • The amount and composition of dissolved organic carbon in wetlands are of great importance for their influence in secondary productivity, various biogeochemical processes, and aquatic ecosystem functions. In the present study, we measured variations of DOC and phenolics concentrations in pore-water of three northern peatlands (bog, fen, and swamp) over a 1-year period. General microbial activity (soil respirometry) and phenol oxidase enzyme activity were determined in the same peatlands to elucidate mechanisms underlying the differences in DOC and phenolics contents. The concentrations of DOC varied 25.5-45.4 (bog),29.2-71.4 (fen), and 13.5-87.6 (swamp) mg/L, while phenolic concentrations ranged 13.3-48.1 (bog), 7.6-29.5(fen) , and 4.9-30.8 (swamp) mg/L. The seasonal variations of DOC and phenolics in the swamp suggest that litterfall may be one of the most important factors for the DOC dynamics in such systems. The lowest microbial activity and phenol oxidase activity were found in the bog, which appears to Induce high percentage of phenolic contents in pore-water from bogs. It is also suggested that not only the DOC concentrations but also composition of DOC is of great importance in wetland biogeochernistry.

A Study on the Biogeochemistry of the Sediments in the Han River Estuary (한강하구 퇴적물의 생지화학적 반응에 관한 연구)

  • Lim, Bo-Mi;Ki, Bo-Min;Choi, Jung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.839-844
    • /
    • 2009
  • This research investigates the importance of the microbial metabolic pathways such as denitrification, iron reduction, and methanogenesis, in the degradation of organic matters of the sediments. There are statistically significant differences( P < 0.05) in the rates of denitrification, iron reduction, and methanogenesis according to the location: Site A has no plant, Site B is dominated by Scirpus, and Site C is dominated by Phragmites. Among them, Site C showed different methanogenesis rate depending on the sediments depth. The organic matter content increased from Site A to Site C. Site A had the smallest organic matter content whereas it showed the largest denitrification rate and iron reduction rate. Site C had the largest methanogenesis rate. Denitrification is the dominant pathways based on the assumption that anaerobic degradation of organic matter is mainly carried out through denitrification, iron reduction, and methanogenesis.

Biogeochemical Remediation of Cr(VI)-Contaminated Groundwater using MMPH-0 (Enterobacter aerogenes) (MMPH-0 (Enterobacter aerogenes)에 의한 6가 크롬 오염 지하수의 생지화학적 정화)

  • Seo, Hyun-Hee;Rhee, Sung-Keun;Kim, Kang-Joo;Park, Eun-Gyu;Kim, Yeong-Kyoo;Chon, Chul-Min;Moon, Ji-Won;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.105-119
    • /
    • 2012
  • Indigenous bacteria isolated from contaminated sites play important roles to remediate contaminated groundwater. Chromium has the most stable oxidation states. Cr(VI) is toxic, carcinogenic, and mobile, but Cr(III) is less toxic and immobile. In this study, indigenous microorganism (MMPH-0) was enriched from Cr(VI) contaminated groundwater, and identified by 16S rRNA gene analysis. Using MMPH-0, the effect of stimulating with e-donors (glucose, lactate, acetate, and no e-donor control), respiration conditions, biomass, tolerance, and geochemical changes on Cr(VI) reduction were investigated in batch experiments for 4 weeks. The changes of Cr(VI) concentration and geochemical conditions were monitored using UV-vis-spectrophotometer and Eh-pH meter. And the morphological and chemical characteristics of MMPH-0 and precipitates in the effluents were characterized by TEM-EDS and SEM-EDS analyses. MMPH-0 (Enterobacter aerogenes) was able to tolerate up to 2000 mg/L Cr(VI) and reduce Cr(VI) under aerobic and anaerobic conditions. MMPH-0 performed faster and higher efficiency of Cr(VI) reduction with electron donors (over 70% after 1 week with e-donor, 10-20% after 4 weeks without e-donor). The changes of Eh-pH in effluents showing the tendency from oxidizing to reducing condition and a bit of acidic change in pH due to microbial oxidation of organic matters donating electrons and protons suggested the roles of MMPH-0 on Cr(VI) in the contaminated water catalyzing to transit geochemical stable zone for more stable $Cr(OH)_3$ or Cr(III) precipitates. TEM/SEM-EDS analyses of MMPH-0 and precipitates indicate direct and indirect Cr(VI) reduction: extracellular polymers capturing Cr component outside cells. These results suggested diverse indigenous bacteria and their biogeochemical reactions might enhance more effective and feasible remediation technology of redox sensitive heavy metals in metal-contaminated in groundwater.

Hydro-ecological characterizations in groundwater dependent ecosystem (지하수 종속 생태환경에서 수문-생태학적 특성 조사 및 분석)

  • Kim, Hee-Jung;Hyun, Yun-Jung;Lee, Kang-Kun
    • Journal of Wetlands Research
    • /
    • v.11 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • The groundwater dependent ecosystem associated with a natural stream is the area where mixing and exchange of surface water and groundwater occurs due to large chemical and hydraulic gradients. Surface-groundwater interactions play an important role in biogeochemical processes in groundwater dependent ecosystems and make this area a hydro-ecological hot spot. The objective of this study is to characterize the groundwater dependent ecosystem in a natural stream where nitrate contamination of stream water is observed by means of hydrogeological, chemical, and biological methods. In this study, vertical flow exchange(hyporheic flow) rates between stream and groundwater were estimated based on vertical hydraulic gradients measured at mini-piezometers of various depths. To investigate the biological natural attenuation potential, biological analyses using polymerase chain reaction(PCR)-cloning methods were performed in this study. Results show that the veritical hyporheic water fluxes affect nitrate concentrations and bacterial densities in groundwater dependent ecosystems to some degree. Also, denitrifying bacteria were identified in hyporheic soils, which may support the biodegradation potential of the groundwater dependent ecosystems under certain conditions.

  • PDF

Effect of Rehmanniae Radix and Pear Phenolic Compound on the STZ-Treated Mice for Induction of Diabetes (생지황(Rehmanniae Radix)과 배의 Phenolic Compound가 Streptozotocin으로 유발된 고혈당 생쥐에 미치는 영향)

  • 김정상;나창수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.1
    • /
    • pp.66-71
    • /
    • 2004
  • This study has been carried out to investigate effect of Rehmanniae Radix (RR) and pear phenolic compound (PC) on the hyperglycemic mice induced with streptozotocin (STZ). For this purpose, male mice were fed with a 0.2 mL RR extract (S group) and the pear PC (90 mg/kg/day) dissolved in a 0.2 mL RR extract (SPC group) while the control group received the same commercial diet for 6 weeks. The blood glucose contents were examined from tail vein blood once a week for 6 weeks. Samples of pancreas removed after the experimental period were processed for the immunohistochemical identification of $\beta$-cells. The levels of serum glucose were decreased significalntly (p<0.05) in the S and SPC groups compared with the control group. The BUN and creatinine levels were significantly (p<0.05) decreased in SPC group compared with the control group. Intraperitoneal glucose tolerance tests peformed at 24 hours before that period revealed that glucose tolerances in S and SPC group were ameliorated. Immunohistochemical analyses of the pancreases revealed that a lot of insulin- positive $\beta$-cells were contained in a Langerhas's islets of S and SPC groups compared with the control group, and the number of Langerhas's islets were significalntly increased in S (p<0.01) and SPC (p<0.05) groups. These results suggest that RR extract and pear PC could recover the damages induced by STZ in the hyperglycemic mice.

Changes of the Oxidation/Reduction Potential of Groundwater by the Biogeochemical Activity of Indigenous Bacteria (토착미생물의 생지화학적 활동에 의한 지하수의 산화/환원전위 변화 특성)

  • Lee, Seung Yeop;Roh, Yul;Jeong, Jong Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.61-69
    • /
    • 2014
  • As we are trying to in-situ treat (purify or immobilize) heavy metals or radionuclides in groundwater, one of the geochemical factors to be necessarily considered is the value of oxidation/reduction potential (ORP) of the groundwater. A biogeochemical impact on the characteristic ORP change of groundwater taken from the KAERI underground was observed as a function of time by adding electron-donor (lactate), electron-acceptor (sulfate), and indigenous bacteria in a laboratory condition. There was a slight increase of Eh (slow oxidation) of the pure groundwater with time under a $N_2$-filled glove-box. However, most of groundwaters that contained lactate, sulfate or bacteria showed Eh decrease (reduction) characteristics. In particular, when 'Baculatum', a local indigenous sulfate-reducing bacterium, was injected into the KAERI groundwater, it turned to become a highly-reduced one having a decreased Eh to around -500 mV. Although the sulfate-reducing bacterium thus has much greater ability to reduce groundwater than other metal-reducing bacteria, it surely necessitated some dissolved ferrous-sulfate and finally generated sulfide minerals (e.g., mackinawite), which made a prediction for subsequent reactions difficult. As a result, the ORP of groundwater was largely affected even by a slight injection of nutrient without bacteria, indicating that oxidation state, solubility and sorption characteristics of dissolved contaminants, which are affected by the ORP, could be changed and controlled through in-situ biostimulation method.

Microbial Community Structures Related to Arsenic Concentrations in Groundwater Occurring in Haman Area, South Korea (함안지역 지하수의 비소(As) 함량과 미생물 군집 특성과의 연관성 검토)

  • Kim, Dong-Hun;Moon, Sang-Ho;Ko, Kyung-Seok;Kim, Sunghyun
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.655-666
    • /
    • 2020
  • This study evaluated the characteristics of arsenic production in groundwater through microbial community analysis of groundwater contaminated with high arsenic in Haman area. Groundwater in Haman area is contaminated with arsenic in the range of 0-757.2 ㎍/L, which represents the highest arsenic contamination concentration reported in Korea as natural groundwater pollution source. Of the total 200 samples, 29 samples (14.5%) showed higher arsenic concentration than that of 10 ㎍/L, which is the standard for drinking water quality, and 8 samples (4%) found in wells with 80-100 m depth were above 50 ㎍/L. In addition, seven wells with arsenic concentration more than 100 ㎍/L located in the northern part of Haman. As a result of microbial community analysis for high arsenic-contaminated groundwater, the microbial community compositions were significantly different between each sample, and Proteobacteria was the most dominant phyla with an average of 61.5%. At the genus level, the Gallinonella genus was predominant with about 12.8% proportion, followed by the Acinetobacter and Methermicoccus genus with about 7.8 and 7.3%, respectively. It is expected that high arsenic groundwater in the study area was caused by a complex reaction of geochemical characteristics and biogeochemical processes. Therefore, it is expected that the constructed information on geochemical characteristics and microbial communities through this study could be used to identify the origin of high arsenic groundwater and the development of its controlling technology.

Analytical Methodology of Stable Isotopes Ratios: Sample Pretreatment, Analysis and Application (안정동위원소비 분석 기법의 이해: 시료의 전처리, 분석 및 자료의 해석과 적용)

  • Kim, Min-Seob;Hwang, Jong-Yeon;Kwon, Oh-Sang;Lee, Won-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.471-487
    • /
    • 2013
  • This review paper was written to provide background information as well as future application for aquatic ecologists interested in using stable isotope. Stable isotope techniques has proved to be an extremely useful to elucidate a lot of environmental and ecological problems. Stable isotopes have been used as possible tracers to identify sources, to quantify relative inputs in a system. When utilized carefully, stable isotope tools provides apparent advantages for the scientists to find out the processes of material cycles in various environments and energy flows in natural ecosystems.