Annual Conference on Human and Language Technology
/
2022.10a
/
pp.447-451
/
2022
본 논문에서는 사용자가 대화 텍스트 방식의 입력을 주었을 때 이를 키워드 중심으로 변환하여 이미지를 생성해내는 방식을 제안한다. 대화 텍스트란 채팅 등에서 주로 사용하는 형식의 구어체를 말하며 이러한 텍스트 형식은 텍스트 기반 이미지 생성 모델이 적절한 아웃풋 이미지를 생성하기 어렵게 만든다. 이를 해결하기 위해 대화 텍스트를 키워드 중심 텍스트로 바꾸어 텍스트 기반 이미지 생성 모델의 입력으로 변환하는 과정이 이미지 생성의 질을 높이는 좋은 방안이 될 수 있는데 이러한 태스크에 적합한 학습 데이터는 충분하지 않다. 본 논문에서는 이러한 문제를 다루기 위한 하나의 방안으로 사전학습된 초대형 언어모델인 KoGPT 모델을 활용하며, 퓨샷 러닝을 통해 적은 양의 직접 제작한 데이터만을 학습시켜 대화 텍스트 기반의 이미지 생성을 구현하는 방법을 제안한다.
Seo, Jaehyung;Park, Chanjun;Moon, Hyeonseok;Eo, Sugyeong;Kang, Myunghoon;Lee, Seounghoon;Lim, Heuiseok
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.55-60
/
2021
최근 한국어에 대한 자연어 처리 연구는 딥러닝 기반의 자연어 이해 모델을 중심으로 각 모델의 성능에 대한 비교 분석과 평가가 활발하게 이루어지고 있다. 그러나 한국어 생성 모델에 대해서도 자연어 이해 영역의 하위 과제(e.g. 감정 분류, 문장 유사도 측정 등)에 대한 수행 능력만을 정량적으로 평가하여, 생성 모델의 한국어 문장 구성 능력이나 상식 추론 과정을 충분히 평가하지 못하고 있다. 또한 대부분의 생성 모델은 여전히 간단하고 일반적인 상식에 부합하는 자연스러운 문장을 생성하는 것에도 큰 어려움을 겪고 있기에 이를 해결하기 위한 개선 연구가 필요한 상황이다. 따라서 본 논문은 이러한 문제를 해결하기 위해 한국어 생성 모델이 일반 상식 추론 능력을 바탕으로 문장을 생성하도록 KommonGen 데이터셋을 제안한다. 그리고 KommonGen을 통해 한국어 생성 모델의 성능을 정량적으로 비교 분석할 수 있도록 평가 기준을 구성하고, 한국어 기반 자연어 생성 모델의 개선 방향을 제시하고자 한다.
We propose an image alignment algorithm based on variable-sized blocks of cylindrical prototype model to generate a face texture for a realistic 3D face model. This is a block matching algorithm which aligns 2D images of a 3D cylindrical model using th correlation between them. While matching blocks, it does not use same sized blocks with considering a curvature of 3D model. And we make a texture of aligned images using a technique of image mosaic. For this purpose, we stitch them with assigning linear weights according to the overlapped region and using the cross-dissolve technique.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.536-542
/
2004
XML이 웹 상에서 문서 교환의 표준으로 자리잡고 있으며 그 수요가 나날이 증가하고 있다. 그에 따라 XML 데이터나 문서 구조를 모델링하는 XML Schema(W3C XML Schema Spec) 또한 수요가 증가하고 있다. 그러나 XML Schema는 다양한 자료형과 풍부한 표현력을 제공하지만 그 복잡성으로 인해 모델링하기가 어려운 단점이 있다. 본 논문에서는 관계형 데이터베이스 설계의 기본적인 도구인 개체-관계 모델을 이용하여 Ut Schema를 간단하게 생성하는 방법을 제시한다. 개체-관계 모델과 변환 될 XML Schema의 구조는 서로 일대일로 매핑되지 않아 직접 변환할 수는 없다. 그래서 몇 가지 알고리즘을 이용하여 개체-관계 모델을 계층적 구조모델로 변환을 한다. 이렇게 변환된 계층적 구조 모델을 이용하여 최종적으로 XML Schema를 생성한다. 여기서 제시한 알고리즘의 특징은 XML Schema의 중요한 특성들인 재사용성, 전역 및 로컬 기능 등을 가진 문서를 생성한다는 것이다.
Journal of the Korea Society of Computer and Information
/
v.29
no.7
/
pp.81-88
/
2024
Despite the rapid growth of the generative AI market and significant interest from domestic companies and institutions, concerns about the provision of inaccurate information and potential information leaks have emerged as major factors hindering the adoption of generative AI. To address these issues, this paper designs and implements a question-answering system based on the Retrieval-Augmented Generation (RAG) architecture. The proposed method constructs a knowledge database using Korean sentence embeddings and retrieves information relevant to queries through optimized searches, which is then provided to the generative language model. Additionally, it allows users to directly manage the knowledge database to efficiently update changing business information, and it is designed to operate in a private network to reduce the risk of corporate confidential information leakage. This study aims to serve as a useful reference for domestic companies seeking to adopt and utilize generative AI.
Jaehong Lee;Hwiyeol Jo;Sookyo In;Sungju Kim;Kiyoon Moon;Taehong Min;Kyungduk Kim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.109-114
/
2022
질의 생성 모델은 스마트 스피커, 챗봇, QA 시스템, 기계 독해 등 다양한 서비스에 사용되고 있다. 모델을 다양한 서비스에 잘 적용하기 위해서는 사용자들의 실제 질의 특성을 반영한 자연스러운 질의를 만드는 것이 중요하다. 본 논문에서는 사용자 질의 특성을 반영한 간결하고 자연스러운 질의 자동 생성 모델을 소개한다. 제안 모델은 topic 키워드를 통해 모델에게 생성 자유도를 주었으며, 키워드형 질의→자연어 질의→응답으로 연결되는 chain-of-thought 형태의 다중 출력 구조를 통해 인과관계를 고려한 결과를 만들도록 했다. 최종적으로 MRC 필터링과 일관성 필터링을 통해 고품질 질의를 선별했다. 베이스라인 모델과 비교해 제안 모델은 질의의 유효성을 크게 높일 수 있었다.
AI 기술의 발달과 생성형 AI의 등장은 기업의 생산성을 높이는데 기여하며, 비즈니스 모델에 새로운 패러다임을 일으켰다. 그러나 생성형 AI는 중요 데이터와 일반 데이터를 구분할 수 없어 기업의 핵심 정보와 같은 치명적인 정보가 외부에 유출될 수 있는 문제가 발생한다. 이러한 이유로 많은 기업이 생성형 AI 사용을 제한하고 있으나, 생성형 AI로 얻을 수 있는 경제적 이점을 포기하기 어려운 상황이다. 따라서, 본 연구는 안전한 데이터 관리 및 유출 방지를 위해 보안 위협과 이를 해결할 기술을 분석한다.
Sejun Oh;Jungeun Yoon;Yoojin Chung;Yoonjoo Cho;Hyosup Shim;Oh Nam Kwon
The Mathematical Education
/
v.63
no.3
/
pp.549-571
/
2024
As digital·AI-based teaching and learning is emphasized, discussions on the educational use of generative AI are becoming more active. This study analyzed the mathematical performance of ChatGPT 4, Claude 3 Opus, and Gemini Advanced on solving examples and problems from five first-year high school math textbooks. As a result of examining the overall correct answer rate and characteristics of each skill for a total of 1,317 questions, ChatGPT 4 had the highest overall correct answer rate of 0.85, followed by Claude 3 Opus at 0.67, and Gemini Advanced at 0.42. By skills, all three models showed high correct answer rates in 'Find functions' and 'Prove', while relatively low correct answer rates in 'Explain' and 'Draw graphs'. In particular, in 'Count', ChatGPT 4 and Claude 3 Opus had a correct answer rate of 1.00, while Gemini Advanced was low at 0.56. Additionally, all models had difficulty in explaining using Venn diagrams and creating images. Based on the research results, teachers should identify the strengths and limitations of each AI model and use them appropriately in class. This study is significant in that it suggested the possibility of use in actual classes by analyzing the mathematical performance of generative AI. It also provided important implications for redefining the role of teachers in mathematics education in the era of artificial intelligence. Further research is needed to develop a cooperative educational model between generative AI and teachers and to study individualized learning plans using AI.
마이크로서비스 아키텍처는 마이크로서비스 간 약결합을 통한 높은 확장성과, 개별 배포를 통한 유지보수성을 제공하는 애플리케이션 구축 방법이다. 그러나, 마이크로서비스 아키텍처는 표준적인 배치방식이나 연결 방법이 부족하여, 마이크로서비스 아키텍처의 전문적인 지식 없이 마이크로서비스 단위를 구분하고 약결합 구조를 배치하기에는 어려움이 있다. 따라서, 본 논문에서는 마이크로서비스 아키텍처의 BCE 패턴 기반 배치 방안으로 마이크로서비스의 기능 및 약결합 구조를 생성형 AI로 학습하는 방법을 제시한다. 제안하는 방법에 따라 생성형 AI 모델인 GPT-3.5-turbo를 바탕으로 파인튜닝 한 결과 파인튜닝 모델을 활용한 배치 정답률이 14% 향상되는 것을 확인하였다. 또한, 파인튜닝 학습 요소의 반영률을 조절하여 모델의 비교 평가를 수행한 결과로 f1-score가 0.019 증가한 것을 통해 파인튜닝 요소가 정답을 결정하는 데 필요한 요소임을 확인하였다.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.22
no.6
/
pp.17-31
/
2023
An activity-based model requires detailed population information to model individual travel behavior in a disaggregated manner. The recent innovative approach developed deep generative models with novel regularization terms that improves fidelity and diversity for population synthesis. Since the method relies on measuring the distance between distribution boundaries of the sample data and the generated sample, it is crucial to obtain well-defined continuous representation from the discretized dataset. Therefore, we propose an improved entity embedding models to enhance the performance of the regularization terms, which indirectly supports the synthesis in terms of feasible and diverse populations. Our results show a 28.87% improvement in the F1 score compared to the baseline method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.