• Title/Summary/Keyword: 생성형인공지능

검색결과 168건 처리시간 0.029초

영화 장르 메타데이터 생성을 위한 오디오 활용 방법에 대한 연구 (A Research on the Audio Utilization Method for Generating Movie Genre Metadata)

  • 용성중;박효경;유연휘;문일영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.284-286
    • /
    • 2021
  • 지속적으로 인터넷 및 디지털의 발전으로 많은 양의 미디어 데이터를 저장하고 온라인을 통해 개인에게 맞춤형 서비스를 제공하는 플랫폼이 등장하고 있다. 이러한 서비스를 제공하는 업체들은 미디어의 소비를 촉진 시키기 위해 개인 취향에 맞는 영화를 추천한다. 각 업체에서는 사용자가 선호할 미디어 추천을 위해 다양한 알고리즘에 대해 많은 연구를 하고 있다. 영화는 액션, 멜로, 공포, 드라마 등으로 장르를 구분하고 있으며, 영화의 오디오(음악,효과,음성)는 영화를 구성하는 중요한 제작 요소로 자리잡고 있다. 본 연구에서는 영화예고편을 바탕으로 장르별 오디오를 추출하고, 장르별 오디오의 공통점을 확인 후 인공지능의 지도학습을 통해 영화 장르를 구별하고 추후 메타데이터 생성을 위한 활용방안을 제안하고자 한다.

  • PDF

고위험 현장의 안전관리를 위한 AI 클라우드 플랫폼 설계 (A Design of AI Cloud Platform for Safety Management on High-risk Environment)

  • 김기봉
    • 미래기술융합논문지
    • /
    • 제1권2호
    • /
    • pp.01-09
    • /
    • 2022
  • 최근 기업과 공공기관에서 안전 이슈는 더는 미룰 수 있는 상황이 아니며, 대형 안전사고가 발생했을 때 직접적인 금전적 손실뿐 아니라 해당 기업 및 공공기관에 대한 사회적 신뢰가 함께 떨어지는 간접적인 손실도 매우 커진다. 특히 사망 사고의 경우는 더욱 피해가 심각하다. 이에 따라 기업 및 공공기관은 산업 안전 교육과 예방에 대한 투자를 확대함에 따라, 고위험 상황이 존재하는 산업현장에서 사용자 행동반경에 영향을 받지 않고 안전관리 서비스가 가능한 개방형 AI 학습모델 생성 기술, 에지단말간 AI협업 기술, 클라우드-에지단말 연동 기술, 멀티모달 위험상황 판단기술, AI 모델 학습 지원 기술을 이용한 시스템 개발이 이루어지고 있다. 특히 인공지능 기술의 발전과 확산으로 안전 이슈에도 해당 기술을 적용하기 위한 연구가 활발해지고 있다. 따라서 본 논문에서는 고위험 현장 안전관리를 위해 AI 모델 학습 지원이 가능한 개방형 클라우드 플랫폼 설계 방안을 제시하였다.

BERT 모델과 지식 그래프를 활용한 지능형 챗봇 (An Intelligent Chatbot Utilizing BERT Model and Knowledge Graph)

  • 유소엽;정옥란
    • 한국전자거래학회지
    • /
    • 제24권3호
    • /
    • pp.87-98
    • /
    • 2019
  • 인공지능이 활발하게 연구되면서 이미지, 영상, 자연어 처리와 같은 다양한 분야에 적용되고 있다. 특히 자연어 처리 분야는 사람이 말하고 쓰는 언어들을 컴퓨터가 이해할 수 있도록 하기 위한 연구들이 진행되고 있고 인공지능 기술에서 매우 중요한 영역 중 하나로 여겨진다. 자연어 처리에서 컴퓨터에게 사람의 상식을 이해할 수 있도록 학습시키고 사람의 상식을 기반으로 결과를 생성하도록 하는 것은 복잡하지만 중요한 기술이다. 단어들의 관계를 이용해 연결한 지식 그래프는 컴퓨터에게 쉽게 상식을 학습시킬 수 있다는 장점이 있다. 하지만 기존에 고안된 지식 그래프들은 특정 언어나 분야에만 집중해 구성되어 있거나 신조어 등에는 대응하지 못하는 한계점을 갖고 있다. 본 논문에서는 실시간으로 데이터를 수집 및 분석하여 자동으로 확장 가능한 지식 그래프를 구축하고, 이를 기반 데이터로 활용하는 챗봇 시스템을 제안하고자 한다. 특히 자동 확장 그래프에 BERT 기반의 관계 추출 모델을 적용시켜 성능을 향상시키고자 한다. 자동 확장 지식 그래프를 이용해 상식이 학습되어 있는 챗봇을 구축하여 지식 그래프의 활용 가능성과 성능을 검증한다.

금융권 인공지능 도입 및 활용 사례 연구 (A Case Study on the Introduction and Use of Artificial Intelligence in the Financial Sector)

  • 김병준;윤소빈;김미옥;전삼현
    • 산업진흥연구
    • /
    • 제8권2호
    • /
    • pp.21-27
    • /
    • 2023
  • 본 연구는 인공지능에 대한 정부와 금융권의 정책 및 활용 사례를 연구하고, 금융권의 향후 정책 과제를 도출 하고자 한다. Gartner에 따르면 2022년 금융업을 이끌어가는 주목할 기술로 '생성형 AI', '자율시스템', '프라이버스 강화 컴퓨테이션(PEC)'을 선정하였다. 금융권은 인공지능, 빅데이터, 블록체인 등 신기술의 발전으로 금융 부분의 혁신을 촉진하고 있다. 코로나 팬데믹 이후 재택근무의 확산 등으로 인한 데이터의 공유, 개인정보 보호 등의 관심이 높아지면서 디지털 신기술에 대한 기업의 변화가 기대된다. 글로벌 금융권 회사들도 디지털 신기술을 활용하여 상품 개발이나 기존 업무의 관리 및 운영에 대한 프로세스 혁신을 도모하고자 IT 비용에 대한 지출을 확대하고 있다. 금융권은 디지털 신기술을 활용하여 자금세탁 방지, 업무 효율성 제고, 개인정보 보호 강화 등의 업무에 적용하고 있다. 산업 간 경계가 사라지는 빅블러의 시대에 새로운 진입자들의 도전에서 경쟁 우위를 선점하기 위해서는 금융권들이 신기술을 업무에 적극 활용해야 한다.

실시간 일정 계획을 위한 지식 획득용 Intelligent Simulator의 개발

  • 김기태;우상복;박찬권;박진우
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1997년도 춘계 학술대회 발표집
    • /
    • pp.18-22
    • /
    • 1997
  • FMS를 포함한 다양한 형태의 생산 시스템에 있어서 일정계획문제는, 고가의 생산 설비를 효율적으로 운영한다는 의미에서 점점 더 중요해지고 있다. 일정 계획문제를 해결하 기 위하여 많은 방법들이 제시되었고 지금 현재도 다양한 방법들이 시도되고 있다. 이런 많 은 방법중에서 최적해를 구하는 수리계획법이 가장 우수한 대안을 제시하는 것으로 알려져 있지만, 최적해를 구하는 데 상당히 많은 시간이 필요한 것으로 알려져 있다. 다음으로 우 선 순위 규칙을 제공하는 방법은 짧은 시간을 이용하여 어느 정도 효율적인 일정계획을 제 시하지만, 생산 시스템의 구성과 상황에 따라서 가장 적합한 우선 순위 규칙이 변한다고 알 려져 있다. 이런 상황에 대응하여 시스템의 구성과 상황에 가장 적합한 규칙을 제안하는 전 문가시스템들이 연구되고 있다. 본 연구는 일정계획을 실시간에 수립하는 스케쥴러를 위한 지식을 획득하는 Intelligent Simulator 개발에 관한 연구이다. 일정계획을 위한 인공지능형 스케쥴러를 구축하는데 있어서 가장 큰 난관은 지식을 어떻게 획득할 것인가 하는 점이다. 이런 지식획득의 방법으로 주로 사용되는 벙법은 인간 전문가의 지식을 추출하는 방법이 있 다. 그러나 인간 전문가가 없거나 인간전문가의 지식으로는 부족한 경우에는 기계학습을 통 하여 지식을 추출한다. 기계학습을 위하여는 반드시 많은 case들을 통하여 지식을 획득하 게 되는 데 이런 case의 축적을 위하여는 실제의 시스템을 운영해본다는 것은 많은 비용을 필요로 한다. 이때 필요한 경험의 생성을 위하여 시뮬레이션은 그 중요한 효용성이 있어서 많은 연구자들이 사용하였다. 그러나 경험을 다 생성한 후 그 경험으로부터 지식을 획득하 다보니 서로 다른 방법의 사용에 의하여 동일한 경험으로부터 서로 다른 지식이 생성되는 가능성이 있다. 본 논문은 시뮬레이션이 계속 수행되는 상황하에서 일정계획에 관련된 지식 을 획득하여 축적할 수 있는 Intelligent Simulator의 개발에 관한 연구이다.

  • PDF

Coexistence Direction of AI and Webtoon Artist

  • Bo-Ra Han
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.87-99
    • /
    • 2024
  • 본 연구는 새로이 재편되는 AI 상용 미래 시대에서 웹툰 작가가 창작자로서 직업적 계보를 존속시키기 위해 어떠한 역량이 요구될 것인지를 파악하기 위해 진행되었다. 생성형 AI의 기술 발달이 어떻게 이뤄질지 알아보고, 그 시점에서 창작자의 역할이 어떻게 변화되어 갈 것인지에 대해, 웹툰의 실례로 현재와 미래의 AI 기술력과 웹툰의 활용 현황에 대해 각각 알아보고 미래 변화될 웹툰계의 생태 속에서 요구될 작가의 역할에 대해 전망해 보고자 하였다. 그 결과, 미래 AI는 자립적인 존재로 인간과 협업이 가능한 수준으로 인간 작업자를 대체할 것으로 예측됐으며, 그 한계점 역시 드러나, 물리적 기술 측면에서는 AI가 대체할 수 있으나, 인간 공감형 분야만큼은 존속시킬 수 있음을 알아보았다. 스토리 기획자, 시각 연출가, AI 편집자라는 창의적인 영역이 창작자의 역할 모형으로 도출되었다. 또한, 현시점에서의 모호한 용어 정의로 인한 혼란을 해소하고자 AI 3단계 단계별 모형으로 기계형, 인간형, 초월형으로 보다 현실적으로 분리 제안하였다. 이러한 결과를 통해 연구자는 앞으로 유입될 신진 창작자나 기존의 창작자들의 재 역량 개발을 위한 가이드라인으로 새로운 기술인 AI에 대한 부정 수용보다는 협업을 통한 상생임을 제시하였다.

데이터 마이닝을 이용한 지능형 전공지도시스템 연구 (A Date Mining Approach to Intelligent College Road Map Advice Service)

  • 최덕원;조경필;신진규
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.266-273
    • /
    • 2005
  • 대학의 학사관리 시스템은 학생이 입학하여 졸업하기까지 수행하는 여러 가지 학사활동 및 과외활동으로부터 발생하는 방대한 데이터를 보유하고 있다. 그러나 이들을 학생들의 전공지도나 진로지도에 효과적으로 활용하지 못하고 있다. 본 논문에서는 학사관리 시스템에 축적된 정보를 대상으로 데이터 마이닝 기법을 적용하여 학생들의 전공선택 및 진로지도에 도움을 줄 수 있는 새로운 정보와 지식을 생성하는 방법을 개발, 제시하였다. 이 연구를 위하여 요인분석, 계층분석 (AHP), 인공신경망, CART 기법 등을 동원하여 데이터 마이닝을 수행함으로써 유용한 지식과 규칙을 생성하였다. 방법론의 개발에 사용된 기본 자료들은 학생들의 Holland 적성검사, TOEIC 점수, 이수과목, 평점 등이다. 연구의 결과로서 기존의 학생지도 담당자가 수작업으로는 알아낼 수 없었던 학생지도에 관한 유용한 규칙을 도출할 수 있었다.

  • PDF

생성형 인공지능 기반 수업 경험 및 활용 방안에 대한 연구 - 프로그래밍 수업을 중심으로 (A Study on the Experience and Utilization of Generative AI-Based Classes - Focusing on Programming Classes)

  • 박중오
    • 실천공학교육논문지
    • /
    • 제16권1_spc호
    • /
    • pp.33-39
    • /
    • 2024
  • 본 연구는 최근 생성형 AI로 인한 새로운 교육 트렌드 변화에 학습자들의 수업 경험에 대한 긍정/부정 인식의 변화와 실제 활용 형태를 살펴본다. 공학 계열 대학생 6학급을 대상으로 2학기 동안 AI 챗봇을 웹 프로그래밍 수업에 활용하였고, 학기 초부터 설문 조사를 시작으로 중간/기말 고사 보고서 제출 기간까지 학습자의 경험과 활용에 대한 변화를 분석했다. 연구 분석 결과, Q/A 피드백과 실습 문제 해결 등 학습 개선에 도움이 되었고, 수업 적용 이후 중간부터 기말범위까지 챗봇에 대한 인식이 긍정적으로 변화하였다. 이외 수업 내에 커뮤니티 단절(개인화) 문제와 교육 S/W로써 활용 방안에 대한 유의미한 결론을 도출했다. 본 연구는 앞으로 생성형 AI 기반 소프트웨어 개발을 위한 기초 연구로써 의의가 있다.

Prompt engineering to improve the performance of teaching and learning materials Recommendation of Generative Artificial Intelligence

  • Soo-Hwan Lee;Ki-Sang Song
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권8호
    • /
    • pp.195-204
    • /
    • 2023
  • 본 연구에서는 GPT, Stable Diffusion과 같은 생성형 인공지능을 이용한 교수·학습 자료 추천 성능 향상을 위해 프롬프트를 개선하는 프롬프트 엔지니어링에 대해 탐색하였다. 분석할 교수·학습 자료의 종류는 그림 자료이다. 프롬프트 구성에 따른 영향을 탐색하기 위해 명령만 담긴 Zero-Shot 프롬프트, 학습 대상 학년 정보가 담긴 프롬프트, 학습 목표가 담긴 프롬프트, 학습 대상 학년과 학습 목표가 모두 담긴 프롬프트를 설계하여 각각을 GPT-3.5모델에 입력하고 응답을 수집하였다. 수집한 응답을 Sentence Transformers로 임베딩 하고 t-SNE를 활용하여 차원 축소하여 시각화 한 다음 프롬프트와 응답 간의 관계를 탐색하였다. 그리고 각 응답을 k-means clustering algorithm을 활용하여 군집화 한 다음 가장 넓은 클러스터의 첫 번째 값을 대표로 선택하여 Stable Diffusion을 이용하여 이미지화 한 다음 교수·학습자료 평가 기준에 따라 초등학교 교사 30명에게 평가 받았다. 초등학교 교사 30인은 추천한 4종의 그림 자료 중 3종은 교육적 가치가 있다고 판단하였으며, 그 중 2종은 실제 수업에 사용할 수 있다고 하였다. 가장 가치 있는 그림 자료를 추천한 프롬프트는 대상 학년과 학습 목표가 모두 담긴 프롬프트로 나타났다.

도메인 특화 기계번역 사후교정 모델 검증 연구 (Verification of the Domain Specialized Automatic Post Editing Model)

  • 문현석;박찬준;서재형;어수경;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-8
    • /
    • 2021
  • 인공지능 기술이 발달함에 따라 기계번역 기술도 많은 진보를 이루었지만 여전히 기계번역을 통한 번역문 내에는 사람이 교정해야 하는 오류가 다수 포함되어있다. 이렇게 번역 모델에서 생성되는 오류를 교정하는 전문인력의 요구를 경감시키기 위하여 기계번역 사후교정 연구가 등장하였고, 해당 연구는 현재 WMT를 주축으로 활발하게 연구되고 있다. 이러한 사후교정 연구는 최근 도메인 특화 관점에서 주로 연구가 이루어지고 있으며 현재 많은 도메인에서 유의미한 성과를 내고 있다. 하지만 이런 연구들은 기존 번역문의 품질을 얼만큼 향상시켰는가에 초점을 맞출 뿐, 다른 도메인 특화 번역모델의 성능과 비교했을 때 얼마나 뛰어난지는 밝히지 않기 때문에 사후교정 연구가 도메인 특화에서 효과적으로 작용하는지 명확하게 알 수 없다. 이에 본 연구에서는 도메인 특화 번역 모델과 도메인 특화 사후교정 모델간의 성능을 비교함으로써, 도메인 특화에서 사후교정을 통해 얻을 수 있는 실제적인 성능을 검증한다. 이를 통해 사후교정이 도메인 특화 번역모델과 비교했을 때 미미한 수준의 성능을 보임을 실험적으로 확인하였고, 해당 실험 결과를 분석함으로써 향후 도메인특화 사후교정 연구의 방향을 제안하였다.

  • PDF