• Title/Summary/Keyword: 생산운영

Search Result 1,935, Processing Time 0.023 seconds

Economic Valuation of Multi-functionality on an Eco-pastoral system in Alpine grassland (산지생태축산의 다원적 기능에 대한 가치 평가)

  • Kim, Se-Hyuk;Kim, Tae-Kyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.4
    • /
    • pp.298-309
    • /
    • 2018
  • This study examined the multi-functionality of an eco-pastoral system in alpine grassland and measured its economic value. The multi-functionality can be divided into three categories: direct-use value, indirect-use value, and heritage value. Direct-use value includes both extractive (forage and livestock production) and non-extractive (recreation and tourism) functions. Indirect-use value includes the functions of water conservation, soil erosion control, atmospheric control, landscape, livestock-manure management, and forest firebreaks. The heritage value includes the function of species diversity. The results showed that the annual value for 1 hectare of the eco-pastoral system in alpine grassland's direct use was estimated to be 21,090,874 Korean won; the indirect-use value was 15,562,203 won when the landscape in grassland system, and 16,018,224 won when the landscape comprised in silvopastoral system. The value of the species diversity in heritage terms ranged from 767,273 to 1,578,845 won, depending on whether it included any endangered species. The total value of multi-functionality of the eco-pastoral system in alpine grassland was estimated to be a minimum of 37,420,350 won/ha and a maximum of 38,687,942 won/ha. The results of this study can provide useful insights for the eco-pastoral system in alpine grassland policies in Republic of Korea.

A Study on the Improvement of Satellite Image Information Service System (위성영상정보 서비스 시스템 개선방안 연구)

  • Cho, Bo-Hyun;Yang, Keum-Cheol;Kim, Song-Gang;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.17 no.5
    • /
    • pp.41-47
    • /
    • 2017
  • The Marine Environment Observation Information System supplies oceanographic information elements such as water temperature, chlorophyll, float, etc. based on satellite images to consumers. The data produced by the Korean marine environmental observatories are located in the coastal areas of Korea. But if the range is too far from a particular area of interest, due to distance or spatial constraints, the accuracy and up-to-dateness of the data can not be relied upon. Therefore, it is necessary to perform fusion and complex operation to solve the difference between the field observation and the marine satellite image. In this study, we develop a system that can process marine environmental information in the user's area of interest in the form of layered character (numeric) information considering the readability and light weight rather than the satellite image. In order to intuitively understand satellite image information, we characterize (quantify) the marine environmental information of the area of interest and we process the satellite image band values into layered characters to minimize the absolute amount of transmitted / received data. Also we study modular location-based interest information service method to be able to flexibly extend and connect interested items that diversify various observation fields as well as application technology to serve this.

Development of Heat Demand Forecasting Model using Deep Learning (딥러닝을 이용한 열 수요예측 모델 개발)

  • Seo, Han-Seok;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.59-70
    • /
    • 2018
  • In order to provide stable district heat supplying service to the certain limited residential area, it is the most important to forecast the short-term future demand more accurately and produce and supply heat in efficient way. However, it is very difficult to develop a universal heat demand forecasting model that can be applied to general situations because the factors affecting the heat consumption are very diverse and the consumption patterns are changed according to individual consumers and regional characteristics. In particular, considering all of the various variables that can affect heat demand does not help improve performance in terms of accuracy and versatility. Therefore, this study aims to develop a demand forecasting model using deep learning based on only limited information that can be acquired in real time. A demand forecasting model was developed by learning the artificial neural network of the Tensorflow using past data consisting only of the outdoor temperature of the area and date as input variables. The performance of the proposed model was evaluated by comparing the accuracy of demand predicted with the previous regression model. The proposed heat demand forecasting model in this research showed that it is possible to enhance the accuracy using only limited variables which can be secured in real time. For the demand forecasting in a certain region, the proposed model can be customized by adding some features which can reflect the regional characteristics.

An Artificial Neural Network Based Phrase Network Construction Method for Structuring Facility Error Types (설비 오류 유형 구조화를 위한 인공신경망 기반 구절 네트워크 구축 방법)

  • Roh, Younghoon;Choi, Eunyoung;Choi, Yerim
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.21-29
    • /
    • 2018
  • In the era of the 4-th industrial revolution, the concept of smart factory is emerging. There are efforts to predict the occurrences of facility errors which have negative effects on the utilization and productivity by using data analysis. Data composed of the situation of a facility error and the type of the error, called the facility error log, is required for the prediction. However, in many manufacturing companies, the types of facility error are not precisely defined and categorized. The worker who operates the facilities writes the type of facility error in the form with unstructured text based on his or her empirical judgement. That makes it impossible to analyze data. Therefore, this paper proposes a framework for constructing a phrase network to support the identification and classification of facility error types by using facility error logs written by operators. Specifically, phrase indicating the types are extracted from text data by using dictionary which classifies terms by their usage. Then, a phrase network is constructed by calculating the similarity between the extracted phrase. The performance of the proposed method was evaluated by using real-world facility error logs. It is expected that the proposed method will contribute to the accurate identification of error types and to the prediction of facility errors.

A Study on Methods of Collecting Records for COVID-19 Archives (COVID-19 아카이브를 위한 기록 수집 방안 연구)

  • Sim, Jiyeon;Kim, Jihyun
    • The Korean Journal of Archival Studies
    • /
    • no.70
    • /
    • pp.189-243
    • /
    • 2021
  • COVID-19 Archives are some of the Disaster Archives. It is necessary to collect disaster records produced in real-time at the disaster scene rather than start collecting records after the disaster recovery. Therefore, this study summarized the definition and purpose of disaster archives to understand the current status of domestic and foreign COVID-19 archives and examined overseas disaster archive collection policies that can be referenced in establishing a COVID-19 archive collection policy. In addition, surveys and interviews were conducted on institutions that establish and operate related archives at home and abroad. As a result, record collection Improvement plans for the COVID-19 archive were proposed: Firstly, in terms of collection policy improvements, the essential elements identified in the survey were selected as additional collection policy elements. Secondly, diversification of participants' groups requires the introduction of clear definitions of collection targets, diversification of promotional methods such as recording record contents through collaboration with related departments, and improving copyright issues that limit record donation. Thirdly, participatory record collection methods with efficient questionnaires in participatory forms and privacy issues are proposed as improvement plans.

A Study on the One-Way Distance in the Longitudinal Section Using Probabilistic Theory (확률론적 이론을 이용한 종단면에서의 단방향 이동거리에 관한 연구)

  • Kim, Seong-Ryul;Moon, Ji-Hyun;Jeon, Hae-Sung;Sue, Jong-Chal;Choo, Yeon-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.87-96
    • /
    • 2020
  • To use a hydraulic structure effectively, the velocity of a river should be known in detail. In reality, velocity measurements are not conducted sufficiently because of their high cost. The formulae to yield the flux and velocity of the river are commonly called the Manning and Chezy formulae, which are empirical equations applied to uniform flow. This study is based on Chiu (1987)'s paper using entropy theory to solve the limits of the existing velocity formula and distribution and suggests the velocity and distance formula derived from information entropy. The data of a channel having records of a spot's velocity was used to verify the derived formula's utility and showed R2 values of distance and velocity of 0.9993 and 0.8051~0.9483, respectively. The travel distance and velocity of a moving spot following the streamflow were calculated using some flow information, which solves the difficulty in frequent flood measurements when it is needed. This can be used to make a longitudinal section of a river composed of a horizontal distance and elevation. Moreover, GIS makes it possible to obtain accurate information, such as the characteristics of a river. The connection with flow information and GIS model can be used as alarming and expecting flood systems.

Types of Landscape Design Concepts through Analysis of Award-Winners for Urban Park Design Competitions (도시공원 설계공모 수상작을 통해 본 조경설계개념의 유형)

  • Kim, A-Yeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.102-115
    • /
    • 2022
  • The purpose of this study is to present types of design concept based on the specificity of landscape design, and to derive a theoretical framework for the landscape design concepts by analyzing the design concepts appearing in urban park design competitions. Through literature review, five types of landscape design concepts were categorized into value and vision, analysis and interpretation, form and structure, program and element, and process and operation. Using this framework, the design concepts shown in 96 works submitted to 18 domestic and overseas urban park design competitions were analyzed. The results of the analysis are summarized as follows. First, due to the complexity of contemporary urban parks, design concepts are presented as mixtures of main concepts and secondary concepts in multiple layers. Second, it was identified that design concepts of 'form and structure' were used the most in urban park designs, followed by the 'program and element' concepts. The 'value and vision' and 'analysis and interpretive' concepts are introduced as third and fourth. Third, the reason that the 'form and structure' concept is widely used as main and secondary concepts is judged to be because the form of a space, which is the key result of the design, has an important influence on the identity of the design. Fourth, the reason that the 'program and element' concept type is widely introduced is that urban park design has a stronger planning aspect to produce programs during the design process, compared with other design fields where programs are usually given in advance. Lastly, it is difficult to see that the properties of the site solely affect the type of design concept, because a design concept is the result of a complex and creative process in which a designer subjectively interprets the objective characteristics of the site and project, and given design guidelines can affect the type of design concept.

A study on The Improvement Plan of The Restricted Development Zone Monitoring system (개발제한구역 모니터링체계 개선방안 연구)

  • Lee, Se-won
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.1
    • /
    • pp.17-36
    • /
    • 2022
  • The purpose of this study is to diagnose problems in the regulation and management of Restricted Development Zone and to prepare a construction plan to convert it to a data-based monitoring system. Unlike other land-use zones, the Restricted Development Zone is a exceptional zone that prohibits all development activities other than the minimum maintenance and must be strictly controlled and managed by the local government. However, the current Restricted Development Zone management is distributed according to the conditions of each local government, and it is not possible to monitor changes in the entire Restricted Development Zone as shown in the survey results. In particular, in this study, by introducing an AI-based monitoring system, MOLIT sends the results of detecting changes across the country at regular time points(monthly and quarterly) to the local governments based on the same regulation standards, and the local governments can be trusted while inputting the regulation results into the system. To propose this methodology, first, a survey and interview were conducted with local government officials and experts. Second, we analyzed cases in which AI analysis was applied to local governments and proposed a plan to improve the efficiency of regulation work according to the introduction of the monitoring system. Third, a plan was prepared to establish a monitoring system based on the advancement of the management information system. This monitoring system can be expanded and applied to land that needs periodic regulation and management in the future, and this study tried to propose a methodology and policy for this.

A Study on Virtual Environment Platform for Autonomous Tower Crane (타워크레인 자율화를 위한 가상환경 플랫폼 개발에 관한 연구)

  • Kim, Myeongjun;Yoon, Inseok;Kim, Namkyoun;Park, Moonseo;Ahn, Changbum;Jung, Minhyuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.3-14
    • /
    • 2022
  • Autonomous equipment requires a large amount of data from various environments. However, it takes a lot of time and cost for an experiment in a real construction sites, which are difficulties in data collection and processing. Therefore, this study aims to develop a virtual environment for autonomous tower cranes technology development and validation. The authors defined automation functions and operation conditions of tower cranes with three performance criteria: operational design domain, object and event detection and response, and minimum functional conditions. Afterward, this study developed a virtual environment for learning and validation for autonomous functions such as recognition, decision making, and control using the Unity game engine. Validation was conducted by construction industry experts with a fidelity which is the representative matrix for virtual environment assessment. Through the virtual environment platform developed in this study, it will be possible to reduce the cost and time for data collection and technology development. Also, it is also expected to contribute to autonomous driving for not only tower cranes but also other construction equipment.

Smart Factory Policy Measures for Promoting Manufacturing Innovation (제조혁신 촉진을 위한 스마트공장 정책방안)

  • Park, Jaesung James;Kang, Jae Won
    • Korean small business review
    • /
    • v.42 no.2
    • /
    • pp.117-137
    • /
    • 2020
  • We examine the current status of smart factory deployment and diffusion programs in Korea, and seek to promote manufacturing innovation from the perspective of SMEs. The main conclusions of this paper are as follows. First, without additional market creation and supply chain improvement, smart factories are unlikely to raise profitability leading to overinvestment. Second, new business models need to connect "manufacturing process efficiency" with "R&D" and "marketing" in value chain in smart factories. Third, when introducing smart factories, we need to focus on the areas where process-embedded technology is directly linked to corporate competitiveness. Based on the modularity-maturity matrix (Pisano and Shih, 2012) and the examples of U.S. Manufacturing Innovation Institute (MII), we establish the new smart factory deployment policy measures as follows. First, we shift our smart factory strategy from quantitative expansion to qualitative upgrading. Second, we promote by each sector the formation of industrial commons that help SMEs to jointly develop R&D, exchange standardized data and practices, and facilitate supplier-led procurement system. Third, to implement new technology and business models, we encourage partnerships, collaborations, and M&As between conventional SMEs and start-ups and business ventures. Fourth, the whole deployment process of smart factories is indexed in detail to identify the problems and provide appropriate solutions.