• Title/Summary/Keyword: 생물 여과막

Search Result 32, Processing Time 0.031 seconds

Effects of C/N Ratio on Removal of Organic Matter and Nitrogen in Alternately Intermittently Aerated Nonwoven Fabric Filter Bioreactor (교대로 간헐 포기되는 부직포 여과막 생물반응조에서 C/N비가 유기물 및 질소 제거효율에 미치는 영향)

  • Ahn, Yun-Chan;Bae, Min-Su;Lee, Jong-Ho;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.499-506
    • /
    • 2005
  • This study was performed to investigate the effects of influent C/N ratio on the removal of organic and nitrogenous compounds by two nonwoven fabric filter bioreactors. The reactors were alternately aerated at an aeration/nonaeration period ratio of 60 min/60 min, and fed with wastewater only during nonaeration period. The influent C/N ratio (COD/TKN) was gradually reduced from 10 to 2. The influent was prepared by diluting the leachate from a foodwaste treatment facility in I city so that the COD concentration could be about 2,500 mg/L. The C/N ratio of the wastewater was adjusted by adding ammonium chloride. The results of the experiment showed that the COD and BOD concentration of the effluent was $40{\sim}54\;mg/L$ and $1{\sim}4\;mg/L$, respectively at the C/N ratios of $10{\sim}3$, and the effluent SS concentration was always below 2.0 mg/L. The T-N removal efficiencies were 96% or higher at C/N ratios of $10{\sim}5$, but decreased to 83% and 81%, respectively at the C/N ratios of 3 and 2.8. At the C/N ratios of 2.6 and 2, the effluent quality deteriorated due to ammonia toxicity. The fraction of nitrifying microorganism in the reactors increased from 10% to 20% as the C/N ratio decreased from 5 to 2.6. Alkalinity consumed were $3.12{\sim}3.49\;g$ alkalinity/g T-N removed at the C/N ratios of $10{\sim}5$, which are lower than the theoretical value of 3.57. However, the ratio increased to 4.63 and 4.87 g alkalinity/g T-N removed, respectively at the C/N ratios of 3 and 2.8.

Quality Control Tests and Acceptance Criteria of Diagnostic Radiopharmaceuticals (진단용 방사성의약품의 품질관리시험 및 기준)

  • Park, Jun Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • Radiopharmaceuticals are drugs that contain radioisotopes and are used in the diagnosis, treatment, or investigation of diseases. Radiopharmaceuticals must be manufactured in compliance with good manufacturing practice regulations and subjected to quality control before they are administered to patients to ensure the safety of the drug. Radiopharmaceuticals for administration to humans need to be sterile and pyrogen-free. Hence, sterility tests and membrane filter integrity tests are carried out to confirm the asepticity of the finished drug product, and a bacterial endotoxin test conducted to assess contamination, if any, by pyrogens. The physical appearance and the absence of foreign insoluble substances should be confirmed by a visual inspection. The chemical purity, residual solvents, and pH should be evaluated because residual by-products and impurities in the finished product can be harmful to patients. The half-life, radiochemical purity, radionuclidic purity, and strength need to be assessed by analyzing the radiation emitted from radiopharmaceuticals to verify that the radioisotope contents are properly labeled on pharmaceuticals. Radiopharmaceuticals always carry the risk of radiation exposure. Therefore, the time taken for quality control tests should be minimized and care should be taken to prevent radiation exposure during handling. This review discusses the quality control procedures and acceptance criteria for a diagnostic radiopharmaceutical.

Removal Characteristics of Geosmin in a Slow Sand Filteration Process (완속 모래여과 공정에서의 Geosmin 제거 특성)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.754-760
    • /
    • 2010
  • Geosmin removal by biodegradation was investigated in lab-scale slow sand filtration column with different empty bed contact times (EBCTs) and water temperature. Schmutzdecke layer was built up after 30 days operation and biomass and activity were $4.5{\times}10^6\;CFU/g$ and $3.42\;mg{\cdot}C/m^3{\cdot}hr$, respectively. The attached bio-film microorganisms in schmutzdecke layer were isolated and identified. The dominant species was Pseudomonas sp. that had occupied 56%. Removal efficiencies of dissolved organic carbon (DOC) and geosmin were 27% and 95% after 30 days operation. In lab-scale slow sand filtration column, geosmin and DOC removal efficiencies were 62% and 10% at $5^{\circ}C$, respectively. And increasing water temperature ($15^{\circ}C$ and $25^{\circ}C$) increased the geosmin and DOC removal efficiencies (88~100% and 25~42%) in lab-scale slow sand filtration column. Geosmin and DOC biodegradation rates (k) in the schmutzdecke layer (in the upper 5 cm filter bed) were $1.842{\sim}15.965\;hr^{-1}$1 and $0.253{\sim}1.123\;hr^{-1}$, respectively. It were about 18~32 times and 20~51 times of the rates in the deeper filter bed (5~60 cm).

Forward Osmosis Membrane to Treat Effluent from Anaerobic Fluidized Bed Bioreactor for Wastewater Reuse Applications (하수재이용을 위한 혐기성 유동상 생물반응기 처리수의 정삼투 여과막의 적용)

  • Kwon, Dae-eun;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.28 no.3
    • /
    • pp.196-204
    • /
    • 2018
  • The anaerobic fluidized bed bioreactor (AFBR) treating synthetic wastewater to simulate domestic sewage was operated under GAC fluidization to provide high surface area for biofilm formation. Although the AFBR achieves excellent COD removal efficiency due to biological activities, concerns are still made with nutrient such as nitrogen remaining in the effluent produced by AFBR. In this study, forward osmosis membrane was applied to treat the effluent produced by AFBR to investigate removal efficiency of total nitrogen (TN) with respect to the draw solution (DS) such as NaCl and glucose. Permeability of FO membrane increased with increasing DS concentration. About 55% of TN removal efficiency was observed with the FO membrane using 1 M of NaCl of draw solution, but almost complete TN removal efficiency was achieved with 1 M of glucose of draw solution. During 24 h of filtration, there was no permeate flux decline with the FO membrane regardless of draw solution applied.

Rooting and Acclimatization of Shoots Harvested from Bioreactor Culture in Rehmania glutinosa (생체반응기에서 수확한 지황 신초의 발근과 순화)

  • Koh, Eun-Jung;Chae, Young-Am
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.3
    • /
    • pp.186-188
    • /
    • 2002
  • This experiment was carried out to know the effect of media and agar concentrations, aeration and growth regulators on rooting and acclimatization of the shoots harvested from bioreactor culture in Rehmannia glutinosa. Half MS media with 1.2% agar improved rooting and acclimatization of shoots. Shoots were effectively acclimatized and rooted well in case of aeration by using membrane filtered vessels. Shoots acclimatized in vessel with membrane Inter were healthier and had higher ex vitro survival rate than those without membrane Inter on plug tray. Addition of paclobutrazol 0.3-0.4 mg/L, to acclimatization media enhanced shoots growth and root development.

A Basic Study on the Anaerobic Wastewater Treatment using Nonwoven Fabric Filter Bioreactor (부직포 여과막 생물반응조의 혐기성 폐수처리에 관한 기초연구)

  • Kim, Taek-Su;Bae, Min-Su;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.464-469
    • /
    • 2005
  • In the nonwoven fabric filter bioreactor (NFBR), both the construction and the operation costs could be saved because a high concentration of microorganism can be maintained in the reactor as in the membrane bioreactor. However, the NFBR process has been investigated only under aerobic and/or anoxic conditions, In this research, a basic anaerobic treatment experiment was performed at $35^{\circ}C$ by feeding an airtight NFBR with a concentrated synthetic organic wastewater. The organic loading rate (OLR) of the NFBR was increased stepwise from $0.25kg\;COD/m^3-day$ to $0.77kg\;COD/m^3-day$ by gradually decreasing the hydraulic retention time from 20 days to 13 days. The results of the research showed that the best COD removal efficiency achieved at the OLR of $0.67kg\;COD/m^3-day$ with a value of 99.3%. The methane content of the produced gas was highest with a value of 61.2% at the OLR of $0.33g\;COD/m^3-day$. The highest methane production rate was $0.89g\;COD/m^3-day$ at the same OLR. The operation was terminated at the OLR of $0.77kg\;COD/m^3-day$ because of the deterioration in COD removal efficiency, gas production rate, and the methane content of the gas. Further researches are recommended for the NFBR to be employed for anaerobic treatment of organic wastewaters.

Design of Recycle Bubble Column Reactor for Continuous Enzymatic Hydrolysis of Cellulose (섬유소의 연속 효소 가수분해를 위한 순환식 기포탑 반응기의 설계)

  • 김춘영;홍석표정봉우이태원
    • KSBB Journal
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 1990
  • Enzymatic hydrolysis of insoluble cellulose was performed in a bubble column with tangential flow ulrafiltration membrane unit. The reactor was operated in a batch mode as well as semi-continuous and continuous with continuous removal of products through the tangential flow ultrafiltration membrane. The optimum superficial gas velocity was 1-3cm / sec so as to avoid bubble coalescence and enzyme denaturation. In continuous and selni-cotinuous process, the conversion was gradually increased but the total reduced sugar concentration was drcastically dereased with the dilution rate. It was concluded that the bubble column attaching tangential flow ultrafiltration membrane unit was effective on continuous hydrolysis of cellulose and recovery of enzyme.

  • PDF

Effects of MLSS Concentration and Influent C/N Ratio on the Nitrogen Removal Efficiency of Alternately Intermittently Aerated Nonwoven Fabric Filter Bioreactors (교차 간헐 포기식 부직포 여과막 생물반응조에서 MLSS 농도 및 유입수 C/N 비가 질소 제거효율에 미치는 영향)

  • Jung, Kyoung-Eun;Bae, Min-Su;Lee, Jong-Ho;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.501-510
    • /
    • 2006
  • To investigate the effects of MLSS concentration and influent C/N ratio on the nitrogen removal efficiency of alternately intermittently aerated nonwoven fabric filter bioreactors, the MLSS concentrations of the reactors were maintained at approximately 5,500 mg/L, 10,000 mg/L and 15,000 mg/L, and the influent TCOD/TKN ratio was decreased gradually from 5 to 2 by adding $NH_4Cl$. The influent was prepared by diluting a food waste leachate to a TCOD concentration of about 300 mg/L. The results of the experiment showed F/M ratios less than 0.112 g TCOD/g MLSS-day, average TCOD removal efficiencies of above 95%, and an average observed microbial yield coefficient of 0.283 g MLSS/g COD removed. The nitrification efficiencies were computed to be always better than 96% except one case where the nitrification efficiency was 90.5% when the MLSS concentration and the influent TCOD/TKN ratio was 5,500 mg/L and 2, respectively. The denitrification efficiency deteriorated as the influent TCOD/TKN ratio decreased. The average denitrification efficiency at the MLSS concentration of 10,000 mg/L was 10.7% better than that at the MLSS concentration of 5,500 mg/L, and the denitrification rate improved at a rate of 2.66 mg NL as the MLSS concentration increased by 1,000 mg/L. When the MLSS concentration was 15,000 mg/L, however, the average denitrification efficiency was merely 4.6% higher compared to when the MLSS concentration was 5,500 mg/L, and the denitrification rate increased at a rate of 0.75 mg N/L per 1,000 mg/L MLSS increase. Therefore, no strict proportional relationship was found between MLSS concentration and endogenous denitrification rate. The average alkalinity consumption rate was 3.36 mg alkalinity/mg T-N removed, which is similar to the theoretical value of 3.57 mg alkalinity/mg T-N removed, but the rate increased as the influent TCOD/TKN ratio decreased.

Preparation of PVdF/GO Composite Nanofibrous Flat Membrane and its Permeation Characteristics in Activated Sludge (PVdF/GO 복합 나노섬유 평막의 제조 및 활성슬러지 내 투과특성)

  • Won, In Hye;Jang, Wongi;Chung, Kun Yong;Byun, Hongsik
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2015
  • In this study the nanofiber was prepared by electrospinning method with polyvinylidene fluoride (PVdF) and a completely dispersed solution of graphene oxide (GO) in the mixed solvent of dimethylformamide (DMF) and acetone. The $0.4{\mu}m$ pore size microfiltration flat membrane was made by increasing layers of the PVdF/GO composite nanofiber. Also, transmembrane pressure (TMP) was measured in order to evaluate fouling of the PVdF/GO composite membrane which was introduced GO reducing biological fouling with the intrinsic antibacterial characteristics. The permeate experiments were carried out simultaneously for the PVdF/GO and commercialized CPVC (chlorinated polyvinyl chloride) flat membranes with $0.01m^2$ effective area in the activated sludge solution of MLSS 4,500 mg/L. TMP of PVdF/GO membrane decreased up to 79% lower than that of CPVC for $10L/m^2{\cdot}h$ permeate flux without air supply. Also, for the case of run/stop operational mode, TMP of PVdF/GO membrane decreased up to 69% lower than that of CPVC for $10L/m^2{\cdot}h$.

Nanocomposite Water Treatment Membranes: Antifouling Prospective (수처리용 나노복합막: 방오의 관점에서)

  • Kim, Soomin;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.3
    • /
    • pp.158-172
    • /
    • 2020
  • In the aspect of saving energy and water, facilitating the separation membrane for the water treatment has been rising recently as one of the possible solutions. However, microbial biofouling effect is the biggest obstacle that hinders reaching higher permeability over a prolonged period of nanofiltration operation. To solve this problem and fully utilize the filtration membranes with enhanced performance, largely two kinds of solutions are studied and the first and the most commonly mentioned type is the one using the silver nanoparticles. Since silver nanoparticles are important to be well tailored on membrane surface, various methods have been applied and suggested. Using silver nanoparticles however also has the drawbacks or possible toxicity risks, raising the need for other types of utilizing non silver particles to functionalize the membrane, such as copper, graphene or zinc oxides, and amine moieties. Each attempt included in either kind has produced some notable results in killing, preventing, or repelling the bacteria while at the same time, left some unsolved points to be evaluated. In this review, the effects of metal nanoparticles and other materials on the antifouling properties of water treatment membranes are summarized.