Browse > Article
http://dx.doi.org/10.15324/kjcls.2021.53.1.1

Quality Control Tests and Acceptance Criteria of Diagnostic Radiopharmaceuticals  

Park, Jun Young (Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine)
Publication Information
Korean Journal of Clinical Laboratory Science / v.53, no.1, 2021 , pp. 1-10 More about this Journal
Abstract
Radiopharmaceuticals are drugs that contain radioisotopes and are used in the diagnosis, treatment, or investigation of diseases. Radiopharmaceuticals must be manufactured in compliance with good manufacturing practice regulations and subjected to quality control before they are administered to patients to ensure the safety of the drug. Radiopharmaceuticals for administration to humans need to be sterile and pyrogen-free. Hence, sterility tests and membrane filter integrity tests are carried out to confirm the asepticity of the finished drug product, and a bacterial endotoxin test conducted to assess contamination, if any, by pyrogens. The physical appearance and the absence of foreign insoluble substances should be confirmed by a visual inspection. The chemical purity, residual solvents, and pH should be evaluated because residual by-products and impurities in the finished product can be harmful to patients. The half-life, radiochemical purity, radionuclidic purity, and strength need to be assessed by analyzing the radiation emitted from radiopharmaceuticals to verify that the radioisotope contents are properly labeled on pharmaceuticals. Radiopharmaceuticals always carry the risk of radiation exposure. Therefore, the time taken for quality control tests should be minimized and care should be taken to prevent radiation exposure during handling. This review discusses the quality control procedures and acceptance criteria for a diagnostic radiopharmaceutical.
Keywords
Good manufacturing practice; Quality control; Radiopharmaceuticals;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Samlet S, Shedage K, Jain P, Jay Singh JB, Bahadur B, Kumar M, et al. Attributes of bacterial endotoxin test (bet) and its comparison with rabbit pyrogen test. Int J Adv Res. 2019;7:850-857. http://dx.doi.org/10.21474/IJAR01/9106   DOI
2 Iwanaga S. Biochemical principle of limulus test for detecting bacterial endotoxins. Proc Jpn Acad Ser B Phys Biol Sci. 2007;83:110-119. https://doi.org/10.2183/pjab.83.110   DOI
3 Iwanaga S, Morita T, Harada T, Nakamura S, Niwa M, Takada K, et al. Chromogenic substrates for horseshoe crab clotting enzyme. Its application for the assay of bacterial endotoxins. Haemostasis. 1978;7:183-188. https://doi.org/10.1159/000214260   DOI
4 Koh CS. Nucear Medicine. 3rd ed. Seoul: Korea Medical Book; 2008. p171-195.
5 Saha GB. Synthesis of PET radiopharmaceuticals. In: Saha GB, editor. Basics of PET imaging physics, chemistry, and regulations. New York, NY: Springer; 2004. p111-124.
6 Hayashi K, Douhara K, Kashino G. Evaluation of the bubble point test of a 0.22-㎛ membrane filter used for the sterilizing filtration of PET radiopharmaceuticals. Ann Nucl Med. 2014;28:586-592. https://doi.org/10.1007/s12149-014-0830-0   DOI
7 Jornitz MW. Integrity testing. In: Jornitz MW, editor. Sterile filtration. advances in biochemical engineering, vol 98. Berlin, Heidelberg: Springer; 2006. p143-180.
8 Belanger AP, Byrne JF, Paolino JM, DeGrado TR. Use of pressure-hold test for sterilizing filter membrane integrity in radiopharmaceutical manufacturing. Nucl Med Biol. https://doi.org/10.1016/j.nucmedbio.2009.07.008   DOI
9 Wells RG. Instrumentation in molecular imaging. J Nucl Cardiol. 2016:23;1343-1347. https://doi.org/10.1007/s12350-016-0498-z   DOI
10 Decristoforo C, Zolle I, Rakias F, Imre J, Janoki G, Hesslewood SR. Quality control methods of 99mtc pharmaceuticals. In: Zolle I, editor. Technetium-99m Pharmaceuticals. Berlin, Heidelberg: Springer; 2007. p123-150.
11 Moerlein SM. Radiopharmaceuticals for positron emission tomography. In: Kowalsky R, editor. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine. 2nd ed. Washington, DC: American Pharmacists Association; 2004. p337-379.
12 Vallabhajosula S. Quality control of PET radiopharmaceuticals. In: Vallabhajosula S, editor. Molecular imaging. Berlin, Heidelberg: Springer; 2009. p197-204.
13 Reuhs BL, Rounds MA. High-performance liquid chromatography. In: Nielsen SS, editor. Food analysis. Boston, MA: Springer; 2010. p499-512.
14 Molavipordanjani S, Tolmachev V, Hosseinimehr SJ. Basic and practical concepts of radiopharmaceutical purification methods. Drug Discov Today. 2019;24:315-324. https://doi.org/10.1016/j.drudis.2018.09.018   DOI
15 Shukla J, Vatsa R, Garg N, Bhusari P, Watts A, Mittal BR. Quality control of positron emission tomography radiopharmaceuticals: An institutional experience. Indian J Nucl Med. 2013;28:200-206. https://doi.org/10.4103/0972-3919.121963   DOI
16 Cole EL, Stewart MN, Littich R, Hoareau R, Scott PJ. Radiosyntheses using fluorine-18: the art and science of late stage fluorination. Curr Top Med Chem. 2014;14:875-900. https://doi.org/10.2174/1568026614666140202205035   DOI
17 Blevins DW, Rigney GH, Fang MY, Akula MR, Osborne DR. Novel methods for the quantification of toxic, residual phase transfer catalyst in fluorine-18 labeled radiotracers. Nucl Med Biol. 2019;74-75:41-48. https://doi.org/10.1016/j.nucmedbio.2019.07.008   DOI
18 Vallabhajosula S. Radioactivity. In: Vallabhajosula S, editor. Molecular imaging. Berlin, Heidelberg: Springer; 2009. p35-44.
19 Lee BQ, Kibedi T, Stuchbery AE, Robertson KA. Atomic radiations in the decay of medical radioisotopes: a physics perspective. Comput Math Methods Med. 2012;2012:651475. https://doi.org/10.1155/2012/651475   DOI
20 Maulany GJ, Manggau FX, Jayadi J, Waremra RS, Fenanlampir CA. Radiation detection of alfa, beta, and gamma rays with geiger muller detector. Int J Mech Eng Technol. 2018;9:21-27.
21 Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38:358-366. https://doi.org/10.1053/j.semnuclmed.2008.05.002   DOI
22 Berry CR, Garg P. Perspectives in molecular imaging through translational research, human medicine, and veterinary medicine. Semin Nucl Med. 2014;44:66-75. https://doi.org/10.1053/j.semnuclmed.2013.10.002   DOI
23 Payolla FB, Massabni AC, Orvig C. Radiopharmaceuticals for diagnosis in nuclear medicine: a short review. Ecletica Quimica Journal. 44:11-19. https://doi.org/10.26850/1678-4618eqj.v44.3.2019.p11-19   DOI
24 Baldrick P. Nonclinical safety testing of imaging agents, contrast agents and radiopharmaceuticals. J Appl Toxicol. 2021;41:95-104. https://doi.org/10.1002/jat.4054   DOI
25 Stelmach HA, Quinn JL III. Radiopharmaceutical quality control. Semin Nucl Med. 1974;4:295-303. https://doi.org/10.1016/s0001-2998(74)80016-4   DOI
26 Woldring MG. Radiopharmaceuticals and good radiopharmacy practice. Pharmaceutisch weekblad. 1981;3:1285-1301. https://doi.org/10.1007/BF02193377   DOI
27 Hung JC. Quality control in nuclear pharmacy. In: Kowalsky R, editor. Radiopharmaceuticals in nuclear pharmacy and nuclear medicine, 2nd ed. Washington, DC: American Pharmacists Association; 2004. p399-450.
28 Ma Y, Huang BX, Channing MA, Eckelman WC. Quantification of Kryptofix 2.2.2 in 2-[(18)F]FDG and other radiopharmaceuticals by LC/MS/MS. Nucl Med Biol. 2002;29:125-129. https://doi.org/10.1016/s0969-8051(01)00269-4   DOI
29 Halvorsen NE, Kvernenes OH. A fast and simple method for the determination of TBA in 18F-labeled radiopharmaceuticals. Pharmaceuticals (Basel). 2020;13:27. https://doi.org/10.3390/ph13020027   DOI
30 Kuntzsch M, Lamparter D, Bruggener N, Muller M, Kienzle GJ, Reischl G. Development and successful validation of simple and fast TLC spot tests for determination of Kryptofix® 2.2.2 and tetrabutylammonium in 18F-labeled radiopharmaceuticals. Pharmaceuticals (Basel). 2014;7:621-633. https://doi.org/10.3390/ph7050621   DOI
31 Klok RP, Windhorst AD. Residual solvent analysis by gas chromatography in radiopharmaceutical formulations containing up to 12% ethanol. Nucl Med Biol. 2006;33:935-938. https://doi.org/10.1016/j.nucmedbio.2006.07.003   DOI
32 Coenen HH, Gee AD, Adam M, Antoni G, Cutler CS, Fujibayashi Y, et al. Consensus nomenclature rules for radiopharmaceutical chemistry - Setting the record straight. Nucl Med Biol. 2017;55:v-xi. https://doi.org/ 10.1016/j.nucmedbio.2017.09.004   DOI
33 Choe YS. Molar activity of radiopharmaceuticals. J Radiopharm Mol Probes. 2018;4:22-25. https://doi.org/10.22643/JRMP.2018.4.1.22   DOI
34 Tewson TJ, Krohn KA. PET radiopharmaceuticals: state-of-the-art and future prospects. Semin Nucl Med. 1998;28:221-234. https://doi.org/10.1016/s0001-2998(98)80028-7   DOI
35 Saha GB. Diagnostic uses of radiopharmaceuticals in nuclear medicine. In: Saha GB, editor. Fundamentals of nuclear pharmacy. New York, NY: Springer; 1998. p238-319.
36 Koh CS. Nucear Medicine. 3rd ed. Seoul: Korea Medical Book; 2008. p7-11.
37 Koh CS. Nucear Medicine. 3rd ed. Seoul: Korea Medical Book; 2008. p128-170.
38 International Atomic Energy Agency. Radioisotope handling facilities and automation of radioisotope production. Technical report. Vienna: International Atomic Energy Agency; 2004 Oct. p1-65. IAEA-TECDOC-1430.
39 Lau J, Rousseau E, Kwon D, Lin KS, Benard F, Chen X. Insight into the development of PET radiopharmaceuticals for oncology. Cancers (Basel). 2020;12:1312. https://doi.org/10.3390/cancers12051312   DOI
40 Lammertsma AA. PET/SPECT: functional imaging beyond flow. Vision Res. 2001;41:1277-1281. https://doi.org/10.1016/s0042-6989(00)00262-5   DOI
41 Blankenberg FG, Strauss HW. Nuclear medicine applications in molecular imaging. J Magn Reson Imaging. 2002;16:352-361. https://doi.org/10.1002/jmri.10171   DOI
42 Alsharef S, Alanazi M, Alharthi F, Qandil D, Qushawy M. Review about radiopharmaceuticals: preparation, radioactivity, and applications. Int J App Pharm. 2020;12:8-15. https://doi.org/10.22159/ijap.2020v12i3.37150   DOI
43 International Atomic Energy Agency. Quality control in the production of radiopharmaceuticals. Technical report. Vienna: International Atomic Energy Agency; 2018 Oct. p1-150. IAEA-TECDOC-1856.
44 United States Pharmacopeia. USP<71>Sterility tests. In: 2018 United States Pharmacopeia and National Formulary. United States Pharmacopeia 41-National Formulary 36. Rockville, MD: United States Pharmacopeial Convention; 2018. p5984-5991.
45 England MR, Stock F, Gebo JET, Frank KM, Lau AF. Comprehensive evaluation of compendial USP<71>, BacT/Alert Dual-T, and Bactec FX for detection of product sterility testing contaminants. J Clin Microbiol. 2019;57:e01548-18. https://doi.org/10.1128/JCM.01548-18   DOI
46 United States Pharmacopeia. USP<823>positron emission tomography drugs for compounding, investigational, and research uses. In: 2012 United States Pharmacopeia and national formulary. United States Pharmacopeia 35-national formulary 30. Rockville, MD: United States Pharmacopeial Convention; 2012. p398-406.
47 United States Pharmacopeia. USP<85>bacterial endotoxins test. In: 2012 United States Pharmacopeia and national formulary. United States Pharmacopeia 35-national formulary 30. Rockville, MD: United States Pharmacopeial Convention; 2012. p5625-5629.
48 Freudenberg MA, Galanos C. Bacterial lipopolysaccharides: structure, metabolism and mechanisms of action. Int Rev Immunol. 1990;6:207-221. https://doi.org/10.3109/08830189009056632   DOI
49 Danner RL, Elin R, Hosseini J, Wesley R, Reilly J, Parillo J. Endotoxemia in human septic shock. Chest. 1991;99:169-175. https://doi.org/10.1378/chest.99.1.169   DOI
50 Wachtel RE, Tsuji K. Comparison of limulus amebocyte lysates and correlation with the United States Pharmacopeial pyrogen test. Appl Environ Microbiol. 1977;33:1265-1269. https://doi.org/10.1128/AEM.33.6.1265-1269.1977   DOI