• Title/Summary/Keyword: 생물활성도

Search Result 2,989, Processing Time 0.029 seconds

Biological Activities of Culture Broth of Some Wood Rotting Basidiomycetes -Antimicrobial, plant growth regulatory, antitumor, and enzymatic activities- (목재부후성 담자균류 배양균사체의 생물활성 연구 -항균활성, 식물생장조절활성, 항암활성, 효소활성탐색-)

  • Cho, Soo-Muk;Yu, Seung-Hun;Shin, Gwan-Chull
    • The Korean Journal of Mycology
    • /
    • v.24 no.1 s.76
    • /
    • pp.17-24
    • /
    • 1996
  • For screening of biological activities of culture broth of some wood rotting basidiomycetes, antimicrobial activity, plant growth regulating activity, antitumor activity, and various enzyme activities were checked. Coriolus versicolor 5129 and C. pubescens 5131 strains showed inhibition activity against gram-positive bacteria and Lenzites betulina 8029 strain showed the activity against gram-negative bacteria. L. betulina 8085 inhibited the growth of both bacteria and plant pathogenic fungi. All of tested basidiomycetes inhibited the germination and growth of radish and cabbage at concentration of 0.8ml/ml. Especially, Fomitopsis pinicolor 8059 and Fomitella fraxinea 8084 showed strong inhibition activity. In contrast, Bjerkandera adusta 8054 stimulated the growth of cabbage and radish at concentration of 0.4 and 0.2ml/ml. All polysaccharides from tested basidiomycetes showed anti-tumor activity against sarcoma 180 and the stronger antitumor activity was observed in L. betulina 8029 and unidentified 8058 strain. All tested basidiomycetes had also an ability to degrade cellulose and lignin.

  • PDF

Purification and Identification of Antimicrobial Substances in Phenolic Fraction of Fig Leaves (무화과잎 페놀성 분획중의 항미생물 활성물질의 정제 및 동정)

  • Kang, Seong-Kuk;Chung, Dong-Ok;Chung, Hee-Jong
    • Applied Biological Chemistry
    • /
    • v.38 no.4
    • /
    • pp.293-296
    • /
    • 1995
  • Fig leaves were extracted with methanol and then fractionated with ethyl acetate and various buffers to get active fractions and determined the antimicrobial activities. The acidic and phenolic fractions fractionated from the methanol extract of fig leaves showed the strong antimicrobial activities, but the basic and neutral fractions did not show any activities. The degree of antimicrobial activities of phenolic fraction against tested bacteria was higher than those of acidic fraction, but these against yeasts and mold were almost equivalent to those of acidic fraction. Especially, phenolic fraction was mostly affected on Staphylococcus aureus and Pseudomonas aeruginosa. Four antimicrobial substances purified from the phenolic fraction which showed the strongest antimicrobial activities among the fractions from fig leaves, were identified as psoralen($C_{11}H_{6}O_{3}$, MW. 186), bergapten($C_{12}H_{8}O_{4}$, MW. 216), ${\beta}$-sitosterol($C_{29}H_{50}O$, MW. 414) and umbelliferone ($C_{9}H_{6}O_{3}$, MW. 162).

  • PDF

Denitrification of Wastewater in a Fluidized Bed Biofilm Reactor (유동층 생물막 반응기에서의 폐수 탈질화)

  • 신승훈;서일순;장인용
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.337-343
    • /
    • 2001
  • Activated carbon particles of 1.274 mm diameter and sand particles of 0.455 mm diameter were employed as the support of the biofilm formed in fluidized bed biofilm reactors(FBBRs) for the wastewater denitrification. Ethanol was used as the electron donor in the anoxic respiration. The steady-state biofilm thickness increased as the nitrate loading rate increased, and the activated carbon particles induced thicker biofilm than the sand particles. The FBBRs with sand support showed higher efficiency and rate of the nitrate removal than those with activated carbon support, and exhibited the biomass concentration of 37 kg/㎥ and the nitrate removal rate of 21 kg N/㎥d.

  • PDF

Treahment Scheme of Sea-water Red-tide and Ship Ballast-water (해수적조현상과 선박안정수의 처리 방안)

  • 소대화;전용우;중국명;중국명
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.772-777
    • /
    • 2003
  • 선박이 배출하는 안정수(ballast water)는 외부로부터 유해 생물들이 유입되어 전파해 오는 주요경로로써 해양환경의 매우 중요하고 위험한 일종의 하나이지만, 이에 대한 효과적인 처리방법은 아직까지도 개발되지 못하였다. 그러나 최근 강 전리방전을 이용하여 고 밀집 산소와 물분자를 고농도 수산자유기(OH: hydroxyl radical)로 전리, 활성입자를 발생시켜 신속히 확산시키면 넓은 범위에서 비교적 낮은 농도로 유해성 침입 생물을 잔류물 없이 저렴한 비용으로 살균제나 촉매제의 사용 없이 소멸시켜 처리하는 효과적인 새로운 녹색방법을 제안하였다. 또한, 수산기는 강 산화제로써(산화환원 전위는 2.80 eV), 적조생물을 신속, 효과적으로 사멸시켜 잔유물과 오염물 발생 없이 이상적으로 해양적조현상을 처리할 수 있는 활성물질이다. 고출력 강 전리장치를 활용하면 수산기 활성제의 발생 농도를 Sr104 이상으로 얻을 수 있으므로, 해양적조처리에 요구되는 문턱 값 농도(~l$\times$$10^{-6}$)를 충족시킬 수 있으며, 이 경우 적조생물 소멸처리시간은 불과 10 sec 내외이므로 선박 안정수 처리문제와 함께 적조발생의 난문제를 해양동력학적으로 동시에 해결할 수 있는 효과적인 기술이다. 실험결과로부터 시간당 1 k톤의 활성물질을 발생하는 수산기활성제 제조장치의 경우, 약 4$\times$$10^2$ $\textrm{km}^2$/h의 적조해면을 처리할 수 있으며, 그 비용은 약 US$l,000 정도에 상당하므로, 적조에 따른 경제손실과는 비교될 수 없는 저렴하고 효과적인 방법이다. 활성물질의 생성시간과 가공시간은 불과 수십 $\mu\textrm{s}$ 및 수 sec 에 불과하므로, 1 kton/h 용량의 수산기활성제 제조장치의 환산소비동력은 약 200 kW이고, 장치의 체적은 10~30 ㎥의 공간으로 충분하므로, 소형선박으로 상당면적의 적조피해를 효과적으로 해결할 수 있다.

  • PDF

P. aeruginosa EMS1의 mutagen 처리를 통한 고기능 유화재 균주의 개발

  • Lee, Geun-Hui;Lee, O-Mi;Kim, Gi-Han;Cha, Mi-Seon;Son, Hong-Ju;Lee, Sang-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.556-557
    • /
    • 2001
  • This study was performed to improve the efficency of production of biosudactant which were produced by newly screened MNNGCN-Methyl-N-Nitro- Nitrosoguanidine) mutagenized P. aeruginosa EMS1. A culture grown exponentially for $30^{\circ}C$ in trypic soy brotb is adjusted to pH. MNNG is added and incubated in water bath shaker at about 250 ${\sim}$300rpm. After 20 min, is dilutecl into colded trypic soy broth and centrifugation. The cell pellet is resuspended in 50$m{\ell}$ of trypic soy broth. Cultures are grown at $30^{\circ}C$ overnight. cetyltrimethylammonium bromide-metbylene blue agar plate selected dark blue halo colony. Peanut oil, Castor oil, Olive oil, and so on were compared as carbon source of surface tension and emulsifying activity.

  • PDF

Isolation and Characterization of 4-Hydroxy-3-methoxycinnamic Acid and 3,4-Dihydroxycinnamic Acid with Antimicrobial Activity from Root of Pulsatilla koreana (백두옹에서 항미생물 활성을 갖는 4-Hydroxy-3-methoxycinnamic Acid와 3,4-Dihydroxycinnamic Acid의 분리 및 동정)

  • Lee, Hyang-Hee;Ma, Seung-Jin;Moon, Jae-Hak;Park, Keun-Hyung
    • Applied Biological Chemistry
    • /
    • v.41 no.2
    • /
    • pp.191-196
    • /
    • 1998
  • The MeOH extract from root of Pulsatilla koreana was showed antimicrobial activities against bacteria and yeast. The antimicrobial active substances of MeOH extract were successfully purified with solvent fractionation, silica gel adsorption column chromatography and Sephadex LH-20 column chromatography. The purified two active substances were isolated by HPLC and identified as 4-hydroxy-3-methoxycinnamic acid and 3,4-dihydroxycinnamic acid by MS, $^{1}H-NMR$ and $^{13}C-NMR$.

  • PDF

Removal Characteristics of Chloral Hydrate by Activated Carbons and Biofiltration (활성탄과 생물여과 공정에서의 Chloral hydrate 제거 특성)

  • Bae, Sang-Dae;Son, Hee-Jong;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.218-224
    • /
    • 2008
  • Coal-, coconut- and wood-based activated carbons and anthracite were tested to evaluate adsorption and biodegradation performances of chloral hydrate. In the early stage of the operation, the adsorption was the main mechanism for the removal of chloral hydrate, however as increasing populations of attached bacteria, the bacteria played a major role in removing chloral hydrate in the activated carbon and anthracite biofilter. It was also investigated that chloral hydrate was readily subjected to biodegrade. The coal- and coconut-based activated carbons were found to be most effective adsorbents in adsorption of chloral hydrate. Highest populations and activity of attached bacteria were shown in the coal-based activated carbon. The populations and activity of attached bacteria decreased in the order: coconut-based activated carbon > wood-based activated carbon > anthracite. The attached bacteria was inhibited in the removal of chloral hydrate at temperatures below 10$^{\circ}C$. It was more active at higher water temperatures(20$^{\circ}C$ <) but less active at lower water temperature(10$^{\circ}C$>). The removal efficiencies of chloral hydrate obtained by using four different adsorbents were directly related to the water temperatures. Water temperature was the most important factor for removal of chloral hydrate in the anthracite biofilter because the removal of chloral hydrate depended mainly on biodegradation. Therefore, the main removal mechanism of chloral hydrate by applying activated carbon was both adsorption and biodegradation by the attached bacteria. The observation suggests that the application of coalbased activated carbon to the water treatment should be the best for the removal of chloral hydrate.

Optimization of Production Conditions of Biosurfactant from Bacillus sp. and its Purification (Bacillus sp.에 의한 생물계면활성제의 생산 및 그의 성질)

  • Kim, Jin-Sook;Song, Hee-Sang;Chung, Nam-Hyun;Bang, Won-Gi
    • Applied Biological Chemistry
    • /
    • v.48 no.2
    • /
    • pp.109-114
    • /
    • 2005
  • A bacterium capable of emulsifying hydrocarbon, n-hexadecane, and decreasing surface tension of the culture media using oil collapsing method was isolated. The bacterium was partially identified as Bacillus sp. and named BJS-51. n-Hexadecane was the most effective carbon source for production of biosurfactant. Surface tension was decreased from 76 dyne/cm to 31 dyne/cm and CMD (critical micelle dilution) had the highest value of 5.7 at 3% n-hexadecane. Ammonium phosphate was the most effective nitrogen source, when C/N ratio was 60, surface tension and CMD were 29 dyne/cm and 9.2, respectively. Optimum pH and temperature were 7.2 and $30^{\circ}C$, respectively. Produced biosurfactant was extracted and purified using organic solvent extraction method and preparative HPLC systems. After analysis by various color reaction, this biosurfactant was identified as lipopolysaccharide. Surface tension and CMC (critical micelle concentration) of purified biosurfactant were 27 dyne/cm and 0.08 g/l, repectively. CMD was 9.2, so the yield of biosurfactant was about 0.74 g/l at the optimal conditions. The biosurfactant was very stable at wide range of $pH\;2{\sim}12$ with surface tension $29{\sim}31\;dyne/cm$ and showed $29{\sim}30\;dyne/cm$ of surface tension after heat treatment at $100^{\circ}C$ for 60 min.

Production of Biosurfactant by Pseudomonas sp. SW1 for Microbial Remediation of Oil Pollution (유류오염방제를 위한 Pseudomonas sp. SW1로부터 생물계면활성제의 생산)

  • Son, Hong-Joo;Suk, Wan-Su;Lee, Geon;Lee, Sang-Joon
    • Korean Journal of Microbiology
    • /
    • v.33 no.3
    • /
    • pp.193-198
    • /
    • 1997
  • Microorganisms capable of producing biosurfactant were isolated from oil-contaminated soils and seawater. Among them, the selected strain SW1 was identified as Pseudomonas sp. by taxonomical characteristic tests, and so tentatively named Pseudomonas sp. SWI. The optimal temperature and initial pH for biosurfactant production were TEX>30^{\circ}C.$ and 7.0, respectively. The optimal medium composilion for the production of biosurfactant by Pseudomonas sp. SW1 were hexadecane of 2.0%, yeast extract of 0.04%, $K_{2}HPO_4$ of 0.02%, $KH_2PO_4$ of 0.03% and $MgSO_4$ center dot $7H_2O$ of 0.04%, respectively. Under the above conditions, minimum wrface tension was 32 mN/m after incubation of 2 days. The biosurfactant was produced during initial stationary phase in the optimal medium. Pseudotnonas sp. SWl utilized various hydrocarbons such as Bunker oils, n-alkanes and branched alkanes as a sole carbon source.

  • PDF

Effects of Organic Amendments on Heavy Mineral Oil Biodegradation (중질유 오염토양의 생물학적 처리에 있어 amendments의 효과)

  • Lee, Sang-Hwan;Kim, Eul-Young;Choi, Ho-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.54-63
    • /
    • 2007
  • To examine the effects of amendments on heavy mineral oil degradation, a pilot scale experiment was conducted for over 105days. During the experiment, soil samples were collected and analyzed periodically for the determination of residual hydrocarbon and microbial activities. At the end of the experiment, the initial level of contamination ($6,205{\pm}173mgkg^{-1}$) was reduced by $33{\sim}45%$ in the amendment amended soil; whereas only 8% of the hydrocarbon was eliminated in the non-amended soil. Heavy mineral oil degradation was much faster and more complete in compost amended soils. Enhanced dissipation of heavy mineral oil in compost amended soil might be derived from increased microbial activities (respiration, microbial biomass-C) and soil enzyme activity(lipase, dehydrogenase, and FDA hydrolase) were strongly correlated with heavy mineral oil biodegradaton (P < 0.01).