• Title/Summary/Keyword: 생물축적농도

Search Result 183, Processing Time 0.024 seconds

Uptake and Fate of Inorganic Mercury in the Eastern Oyster, Crassostrea virginica (이스턴 오이스터 Crassostrea virginica 에서 무기수은의 섭취와 축적)

  • Cho, Jung H.
    • Journal of Environmental Health Sciences
    • /
    • v.9 no.1
    • /
    • pp.63-76
    • /
    • 1983
  • 중금속은 해수에서보다 해수중의 생물계에 그 농도가 더 높은 것으로 알려져 있으며 수은도 무기형으로 생물계에 존재하다가 생물활동으로 인해 알킬형으로 변한다. food chain이 미량금속 축적의 주통로로 알려져 있으나 그외 몇가지 방법이 제시되고 잇다. 특히 연체동물은 미량금속의 축적현상이 온도, 폭로시간, 시간, 생리적 활동에 다라 상당히 달라진다. 또한 유기알킬 수은이 무기수은보다 비교적 낮은 독성을 나타내지만 후자의 피해도 무시할 수는 없다. 굴(crassostrea virginica)은 염화수은농도가 비교적 낮은 상태에서도 상\ulcorner량의 축적현상을 보여주었다. 두개의 compartment system을 연계적인 상태에서 보면 첫 compartment에서의 초기축적은 가역적이었으나 둘째 Compartment에서 측정된 원실율로 보아 비가역적 축적이상을 확인해 주었다. 뿐만 아니라 미량금속이 아가미와 외부 근육에서 가장 높은 축적률을 보인것은 flow system의 regression moder과 매우 흡사함을 암시하며 농도가 낮은 상태에서의 축적이상에 중요한 의미를 부여하였다.

  • PDF

Bioaccumulation of Chromium and Manganese in the Earthworm Eisenia andrei (Annelida; Oligochaeta) in Relation to the Supply of Organic Sludges (유기성 슬러지 급이에 따른 크롬과 망간의 줄지렁이 (Eisenia andrei (Annelida; Oligochaeta)) 체내 생물축적)

  • Bae, Yoon-Hwan;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.101-108
    • /
    • 2016
  • Concentrations of Chromium(Cr) and Manganese(Mn) in several kinds of dewatered organic sewage sludges generated from wastewater treatment plants of Pocheon City, Gyeongii Province were examined. In addition, bioaccumulations of Cr and Mn in the body of earthworm Eisenia fetida were also investigated by changing of feed sludge amounts. Cr and Mn concentrations in sludges were in the range of 0.0~0.3 mg/kg and 3.6~17.6 mg/kg, respectively, which would not cause acute toxicities to earthworm population. Cr was bioaccumulated in the earthworm body but bioaccumulation was not proportional to the amount of sludges supplied. The degree of bioaccumulation of Cr decreased in later phase as the supplied amounts of sludges increased. Meanwhile, there were rare bioaccumulation with regard to Mn. In this study, the value ranges of bioaccumulation factor (BAF) for Mn were 0.00~0.12 when 60g of sludges was supplied. In the case of Cr, the value of BAF was 19.33 when 60g of human manure sludge was provided.

Relative Influence of Sediments, Food and Dissolved Sources on Ag Bioaccumulation in the Amphipod Leptocheirus plumulosus (오염된 퇴적물로부터 해양저서 단각류 Leptocheirus plumulosus의 은(Ag)축적에서 흡수경로의 상대적 기여도 평가)

  • Yoo, Hoon;Lee, In-Tae;Lee, Byeong-Gweon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.2
    • /
    • pp.87-93
    • /
    • 2002
  • A amphipod, Leptocheirus plumulosus was exposed to Ag contaminated sediments to evaluate relative importance of various uptake routes (sediment, porewater, supplementary food) for Ag bioaccumulation in sediment-dwelling marine invertebrates. Additionally, influence of AVS (acid-volatile sulfide) on the partitioning of Ag to porewater and on the Ag bioavailability was determined to evaluate the utility of AVS criteria for the management of metal contaminated sediment. The experimental sediments were spiked with 4 levels of Ag (0.1-3.3 ${\mu}$mol Ag/g) and AVS concentrations were manipulated to 40 or <0.5 ${\mu}$mol/g, then equilibrated for >2 months to allow pore water/particulate distributions similar to nature. A L. plumulosus was incubated in the contaminated sediments with overlying water for 35d. During the exposure, the amphipods was fed with supplementary food ($TetraMin^{(R)}$) with or without Ag contamination. Following exposure, tissue Ag in L. plumulosus was strongly correlated with the weak acid extractable Ag in sediments ($r^{2}$=0.87, p<0.001). The ratio of AVS to Ag-SEM (Ag extracted simulaneouls with AVS) had a strong influence on porewater Ag concentration, consistent with previous studies. However, Ag bioaccumulation in L. plumulosus was not influenced by AVS concentrations. The amphipods fed Ag contaminated food took up ${\sim}$ 1.8 X Ag accumulated by the amphipods fed uncontaminated supplementary diet. The result suggests that the benthic invertebrates exposed to metal contaminated sediments would accumulate metals largely via ingestion of contaminated sediments and food, with minor contribution from dissolved sources of porewater and overlying water.

Parameters Affecting Nitrite Accumulation in Submerged Biofilm Reactor (생물막 반응기에서 아질산성 질소의 축척에 미치는 영향인자)

  • Hwang, Byung-Ho;Hwang, Kyung-Yub;Choi, Eui-So
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1789-1797
    • /
    • 2000
  • The objective of this study was to assess parameters affecting nitrite accumulation, which offers advantages in terms of less aeration energy and carbon consumption for denitrification. The influence of the alkalinity to $NH_4{^+}-N$ concentration ratio, pH, FA(free ammonia) concentration and temperature on nitrite accumulation was investigated. The experiment was performed with supernatant from dewatering process of anaerobic digested sludge using a submerged biofilm reactor. The influent contains high strength of ammonium nitrogen and the alkalinity was insufficient for complete nitrification. An increased nitrite accumulation was observed with increase in alkalinity to $NH_4{^+}-N$ concentration ratio. The increase in alkalinity to $NH_4{^+}-N$ concentration ratio has been a maior reason for the high pH value and FA concentration in the reactor. It can be considered that selective inhibition of Nitrobacter can be causes of nitrite accumulation. The nitrite accumulation increased with increment of temperature at fixed alkalinity to $NH_4{^+}-N$ concentration ratio.

  • PDF

Influence of Ag and Cu Contaminated Sediments on the Bioaccumulation and Chronic Toxicity to the Clam Macoma balthica (Ag과 Cu로 오염된 퇴적물이 이매패류 Macoma balthica의 체내 금속축적과 만성독성에 미치는 영향)

  • Yoo, Hoon;Lee, In-Tae;Lee, Byeong-Gweon
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.2
    • /
    • pp.136-145
    • /
    • 2002
  • A laboratory microcosm experiment was conducted to evaluate a major metal uptake route as well as chronic toxic effects of the clam, Macoma balthica exposed to Ag and Cu contaminated sediments. Twenty five clams were exposed to the sediments contaminated with four levels of Ag $Ag(0.01-0.87\mu{mol}\;g^{-1})$ and $Cu(0.75-5.55\mu{mol\;g^{-1})$ for 90 days. AVS (acid volatile sulfide) concentration in the sediments, considered as major factor controlling metal geochemistry and bioavailability, was manipulated to evaluate its effects on Ag and Cu bioaccumulation in M. balthica. Following 90-d exposure, the tissue Ag and Cu in M. balthica increased linearly with the Ag and Cu concentrations in sediments extracted with 1 N HCI (SEM, simultaneously extracted metals with AVS). The bioaccumulation of Ag and Cu in M. balthica was little influenced by difference in [SEM] - [AVS] values, suggesting a minor contribution of pore water metals to bioaccumulation. Tissue Ag and Cu concentrations directly influenced on the clearance rate and glycogen content of the clams. The clams with highest tissue Ag $(1.0\pm{0.2}\mu{mol}\;g^{-1})$ and Cu concentrations $(2.7\pm{0.3}\;\mu{mol}\;g^{-1})$ had only 18-43% of clearance of the clams exposed to uncontaminated sediments. Similarly, glycogen content of the exposed clams had a inverse relationship with tissue Ag and Cu concentrations. These results suggest that M. balthica exposed to Ag and Cu contaminated sediments accumulates metals largely by ingestion of contaminated sediments and can display chronic effects as reduced clearance rate and glycogen content.

The Influence of Acid Volatile Sulfide (AVS) on the Bioavailabiltiy and Toxicity of Cd, Ni, and Zn in Sediments to Marine Polychaete Neanthes Arenaceodentata (Cd, Ni, Zn로 오염된 퇴적물에 노출된 Neanthes arenaceodentata의 금속 생물축적, 사망 및 성장저해에 대한 Acid Volatile Sulfide(AVS) 영향)

  • 이종현;고철환
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.226-234
    • /
    • 2002
  • A sediment exposure experiment was conducted to investigate the influence of acid volatile sulfides (AVS) and simultaneously extracted metals (SEM) in sediments on the bioavailability and toxicity of Cd, Ni and Zn to a marine polychaetes Neanthes arenaceodentata. The test animals were exposed to contaminated sediments spiked by metal mixtures of Cd, Ni, Zn (0.5~15 $\mu$mol/g of total SEM) in low (~1 $\mu$mol/g), medium (~5 $\mu$mol/g) and high AVS series (~10 $\mu$mol/g) to determine bioaccumulation, mortality and individual growth rate in each treatment after 20 days. Cd and Zn bioaccumulation in test animals increased with increasing of overlying water (OW) concentration controlled by AVS. In contrast, Ni bioaccumulation increased with increase of SEM concentration. Mortalities and growth inhibitions of N. arenaceodentata observed in only treatments with [SEM-AVS]>0, due to a high level of OW-Zn. With regard to the mortality, the 20-d LC5O value fur OW-Zn was 9.3(8.0$\pm$11.0) $\mu$M. The LOEC (Lowest Observed Effect Concentration) for Tissue-Zn was 7.8 $\mu$mol/g and the NOEC (No Observed Effect Concentration) was 6.2 $\mu$mol/g. Regarding the inhibition of individual growth rate, the LOEC fer Tissue-Zn was 5.9 $\mu$mol/g, and NOEC was 5.1 $\mu$mol/g. In this study, the toxicity of dissolved metals, especially for Zn, was overemphasized due to the reduced distribution coefficients (K$\_$d/s) of metals in the experimental sediments.

Bioaccumulation of Pb and Cd in Blue Mussel (Mytilus edulis) and Oliver Flounder (Paralichthys olivaceus) Exposed to Rearing Media (노출실험을 통한 진주담치(Mytilus edulis) 넙치(Paralichthys olivaceus)의 Pb 및 Cd 축적에 관한 연구)

  • Cho, Yeong-Gil;Kim, Gi-Beum
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2007
  • The bioaccumulation of Pb and Cd dissolved in seawater was assessed measuring the concentrations recorded within blue mussel (Mytilus edulis) and oliver flounder (Paralichthys olivaceus) after two weeks exposure period. The Pb and Cd concentration within the whole body of two testing organisms increased according to the exposure concentrations, and the such tendency was clear specially from the mussel. Maximum metal concentration reached $5,260({\pm}70)\;{\mu}g/g$ for Pb reared under 5.0 mg/L Pb, $1,040({\pm}40)\;{\mu}g/g$ for Cd reared under 1.0 mg/L Cd in the mussel, and indicated that the bioaccumulation of Pb and Cd was directly related to the rearing medium concentrations. Bioconcentration factors (BCF) reached very high values for Pb (maximum value: $12,100{\pm}1,400$) in the mussel reared under lowest Pb concentration (0.01 mg/L). The BCF value for Cd in the mussel were also far higher at exposure to low Cd concentration than high Cd concentration. At higher external concentrations, the BCF for Cd and Pb declined. This demonstrated the ability of two testing organisms to rapidly uptake heavy metals particularly when exposed to low external concentration. The mean Pb concentration was slightly higher in the gill of mussel than in the digestive gland, while Cd showed a higher level in the digestive gland than in the gill.

  • PDF

Influence of Ammonia and Dissolved Oxygen Concentrations on Nitrite Accumulation in a MBR (MBR 반응조에서 아질산염 축적에 미치는 암모니아와 용존산소 농도의 영향 연구)

  • Choi, In-Su;Wiesmann, Udo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.922-929
    • /
    • 2007
  • The complete oxidation of ammonia to nitrate is a distinctive two-step process divided into the oxidation of ammonia to nitrite(nitritation) by Nitrosomonas and the oxidation of nitrite to nitrate(nitratation) by Nitrobacter. The nitrogen removal via nitrite accumulation offers several advantages such as saving costs for aeration, saving carbon source and finally reduction of sludge discharge. In this work a suspended bioreactor coupled with membrane filtration(MBR) was used to find the process conditions of nitrite build-up. The MBR enables to reach sufficient nitrifying bacteria in the bioreactor, although the autotrophic bacteria can be easily washed out due to their lower growth rate. The dissolved oxygen concentration $c'_{O2}$ and ammonia concentration $c_{NH3}$ in the reactor were varied and investigated as parameters for nitrite accumulation. As a result the higher ammonia concentration in the reactor is very effective for starting nitrite build-up and the effect was strengthened in combination with lower dissolved oxygen concentration. With lower $c'_{O2}<0.3$ $mgL^{-1}$ $O_2$ and high $c_{NH3}=6.3\sim14.9$ $mgL^{-1}$ $NH_3N$ the 74% of the nitrite accumulation was achieved. Specially, it was found that the nitrite accumulation could occur not only in biofilm reactor as many references showed but also in the membrane bioreactor carried out in this study.

Accumulation of inorganic arsenic, and growth rate by changing of phosphate concentration in Hizikia fusiforme (인산염 농도 변화에 따른 톳(Hizikia fusiforme)의 무기비소(As (V)) 축적 및 생장률 변동)

  • Hwang, Un-Ki;Choi, Hoon;Choi, Min-Kyu;Kim, Min-Seob;Choi, Jong-Woo;Heo, Seung;Lee, Ju-Wook
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.189-195
    • /
    • 2019
  • In this study, we performed an analysis of the accumulation of inorganic arsenic and growth rate with changes in phosphate concentration in Hizikia fusiforme. When exposed to inorganic arsenic for fourteen days, we found that the collection of inorganic arsenic hardly increased at high phosphate concentrations (2 mg L-1). However, when the phosphate concentration was low (0.02 mg L-1), accumulation of inorganic arsenic increased. Additionally, H. fusiforme decreased in a growth rate of 14.5% in low phosphate concentration (0.02 mg L-1) and fell in a growth rate of 30% when exposed to inorganic arsenic (10 ㎍ L-1). H. fusiforme cannot distinguish between phosphate and inorganic arsenic. Thus, when phosphate concentration was lower, the inorganic arsenic accumulation increased, and accumulated inorganic arsenic inhibited photosynthesis and cell division, reducing the growth rate. H. fusiforme is known to have higher inorganic arsenic accumulation than other seaweeds. Therefore, various studies are needed to secure the food safety of H. fusiforme which is an essential aquaculture species in Korea.

The Characteristics of Heavy Metal Accumulations in Feral Pigeon (Columba livia) Feathers for Environmental Monitoring (환경모니터링을 위한 집비둘기 깃털의 중금속 축적특성 연구)

  • Lee, Jangho;Lee, Jongchun;Lee, Sang Hee;Kim, Myungjin;Lee, Eugene;Han, Areum;Shim, Kyuyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.6
    • /
    • pp.492-504
    • /
    • 2014
  • Feral pigeon (Columba livia) has been known as a good indicator for accumulations of chemical pollutants in urban areas. However, it is against the animal rights to kill the indicator species in order to monitor pollutants accumulations in wild birds. Eggs and feathers of birds, therefore, have been used as non-invasive monitoring materials. Even though eggs are a good indicator for accumulations of lipophilic pollutants, but unsuitable for some heavy metals such as lead and cadmium because bird's ovary builds a sort of barrier to inhibit higher accumulations of some heavy metals in the eggs. Therefore, feathers instead of eggs have been used as a non-invasive indicator for accumulations of heavy metals. However, there are few studies of heavy metal accumulations of feral pigeon in Korea. In this study, we characterized the characteristics of heavy metal accumulations of feathers in relation to internal organs (bloods, viscera and bones) in feral pigeons between two sites (Hangang Park representing urban area and Hampyeong Park for rural area). The samples from the Hangang Park showed significantly higher lead (Pb) concentrations in the blood, liver and bone than those from Hampyeong Park. The Pb concentration in the feathers was also significantly higher at Hangang Park than at Hampyeong Park. The analytical result for the breast, wing and tail feathers, and the internal organs (blood, lung, liver, kidney and bone) indicated that the Pb concentrations in the feathers were significantly positively correlated with the levels in the kidney and bone. Overall, feathers of feral pigeon may be candidate for bioindicator to monitor for Pb accumulations in urban areas.