• Title/Summary/Keyword: 생물기술

Search Result 3,078, Processing Time 0.03 seconds

Short-term changes of phytoplankton communities after nutrient addition and establishment of stable mass culture condition to prepare the type approval test of USCG Phase-II in mesocosm enclosure (메소코즘에서 USCG phase-II 형식승인 대비 영양염 첨가에 따른 식물플랑크톤 대량 배양조건 확립 및 군집구조의 단주기변화)

  • Baek, Seung Ho;Lee, Min Ji;Shin, Kyoungsoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.34-42
    • /
    • 2016
  • In order to prepare for the type approval test for the United States Coast Guard (USCG) Phase-II of Ballast Water Treatment System (BWTS), a phytoplankton mass culture was conducted in a mesocosm enclosure. We evaluated the response of the phytoplankton community after nutrient addition (+N, +P, and +NP) and investigated the development of the species with increasing culture time. After nutrient dosing, the phytoplankton population significantly (p < 0.05) increased from day 1 to day 3, depending on the nutrient treatments In particular, the specific growth rate of the phytoplankton community in the case of +NP treatment and + N treatment were estimated to be $2.47d^{-1}$ and $1.98d^{-1}$, respectively. The phytoplankton population density in the case of + NP treatment was approximately 50 times higher than that of the control group, suggesting that these treatments could be useful for mass culturing phytoplankton (> 75% of natural community) for the approval regulation of USCG Phase-II. In the phytoplankton community of the mesocosm, Pseudo-nitzchia spp. dominated in the logarithmic growth phase. The cell density decreased significantly (p < 0.05) with increasing time, coinciding with the nutrient limitation. At that time, the dominance of Pseudo-nitzchia spp. shifted to that of Cylindrotheca closterium. Therefore, the optimum nutrient concentration ($N:30{\mu}M$, $P:3{\mu}M$) and reasonable harvesting time (after 3 days in summer) found in this study for the mass culturing of phytoplankton may be helpful to meet the USCG Phase-II biological criteria to be used in BWTS.

Analysis of Vegetation Variation after the Rehabilitation Treatment of Stream (자연형 하천 공법 적용후의 식생변화분석 - 서울시 양재천의 학여울 구간을 중심으로 -)

  • Shin, Joung-Yi
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.10-17
    • /
    • 1999
  • In order to confirm the effectiveness of the natural river improvement technique, the analysis of vegetation was carried out in Yangjae stream between 1996 and 1998. The results of this study showed the numbers of riparian plants had increased from 41 species to 53 species, and the dominant species had changed from annual and biannual(Humulus japonicus, Persicaria thunbergii, Persicaria hydropiper, Panicum dichotomiflorum, Echinochloa crus-galli) to perennials (Phragmites communis). The variation in biomass and biodiversity index were measured and calculated according to the rehabilitation method. Biomass were varied 302 to $828g/m^2$ and biodiversity index was varied 1.53 to 1.52 at point bar plots(A treatment plots) from 1996 to 1998. In conclusion, the natural river improvement technique which has operated in Yanjaecheon for three years has contributed to restoration of riparian plants. Additionally, subsequent study using this technique should be followed in the near future.

  • PDF

Evaluating the Removal Efficiency of Organic Compounds and Nitrogen Depending on Loading Rate in Wastewater Treatment from Fisheries Processing Plant Using an Entrapped Mixed Microbial Cell Technique (미생물 강제포획기술을 이용한 수산물 가공공장 폐수처리에서 부하율에 따른 유기물 및 질소의 제거 효율성 평가)

  • Jeong Byung-Cheol;Chang Soo-Hyun;Jeong Byung-Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.1
    • /
    • pp.14-20
    • /
    • 2006
  • In this study, the feasibility of simultaneous removal of organic materials and nitrogen in the waste-water from fisheries processing plant was evaluated using entrapped mixed microbial cell technique(EMMC) process. The experiment was performed using activated sludge from municipal sewage treatment plant which was immobilized with gel matrix by cellulose triacetate. It was found that the stable operation at the treatment system which is composed of anoxic and oxic tank, was possible when the organic and nitrogen loading rates were increased stepwise. The organic and nitrogen loading rates were applied from 0.65 to $1.72kgCOD/m^3/d$ and from 0.119 to $0.317kgT-N/m^3$ with four steps, respectively. The maximum nitrogen loading rate which could satisfy the regulated effluent standard of nitrogen concentration, was $0.3kgT-N/m^3/d$. The removal efficiency of total nitrogen was decreased apparently as increasing nitrogen loading rates, whereas the removal efficiency of ammonium nitrogen was effective at the all tested nitrogen loading rates. Therefore, it was concluded that nitrification was efficient at the system. Nitrate removal efficiency ranged from 98.62% to 99.51%, whereas the nitrification efficiency at the oxic tank ranged 94.0% to 96.9% at the tested loading rates. The removal efficiencies of chemical oxygen demand(COD) and those of total nitrogen at the entire system ranged from 94.2% to 96.6% and 73.4% to 83.4%, respectively.

  • PDF

A Study on Prioritization of HNS Management in Korean Waters (해상 위험·유해물질(HNS) 관리 우선순위 선정에 관한 연구)

  • Kim, Young Ryun;Kim, Tae Won;Son, Min Ho;Oh, Sangwoo;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.672-678
    • /
    • 2015
  • The types of hazardous and noxious substances (HNS) being transported by sea in Korea are at about 6,000, HNS transport volume accounts for 19% of total tonnage shipped in Korea, and the increase rate of seaborne HNS trade in Korea is 2.5 times higher than the average increase rate of the world seaborne HNS trade. Reflecting this trend, HNS spill incidents have been frequently reported in Korean waters, and there are increasing social demands to develop HNS management technology for the preparedness, response, post-treatment and restoration in relation to HNS spill incidents at sea. In this study, a risk-based HNS prioritization system was developed and an HNS risk database was built with evaluation indices such as sea transport volume, physicochemical properties, toxicities, persistency, and bioaccumulation. Risk scores for human health and marine environments were calculated by multiplying scores for toxicity and exposure. The top-20 substances in the list of HNS were tabulated, and Aniline was ranked first place, but it needs to be managed not by individuals but by HNS groups with similar score levels. Limitations were identified in obtaining data of chronic toxicity and marine ecotoxicity due to lack of testing data. It is necessary to study on marine ecotoxicological test in the near future. Moreover, the priority list of HNS is expected to be utilized in the development of HNS management technology and the relevant technologies, after the expert's review process and making up for the lack of test data in the current research results.

Characteristics of the Graded Wildlife Dose Assessment Code K-BIOTA and Its Application (단계적 야생동식물 선량평가 코드 K-BIOTA의 특성 및 적용)

  • Keum, Dong-Kwon;Jun, In;Lim, Kwang-Muk;Kim, Byeong-Ho;Choi, Yong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.252-260
    • /
    • 2015
  • This paper describes the technical background for the Korean wildlife radiation dose assessment code, K-BIOTA, and the summary of its application. The K-BIOTA applies the graded approaches of 3 levels including the screening assessment (Level 1 & 2), and the detailed assessment based on the site specific data (Level 3). The screening level assessment is a preliminary step to determine whether the detailed assessment is needed, and calculates the dose rate for the grouped organisms, rather than an individual biota. In the Level 1 assessment, the risk quotient (RQ) is calculated by comparing the actual media concentration with the environmental media concentration limit (EMCL) derived from a bench-mark screening reference dose rate. If RQ for the Level 1 assessment is less than 1, it can be determined that the ecosystem would maintain its integrity, and the assessment is terminated. If the RQ is greater than 1, the Level 2 assessment, which calculates RQ using the average value of the concentration ratio (CR) and equilibrium distribution coefficient (Kd) for the grouped organisms, is carried out for the more realistic assessment. Thus, the Level 2 assessment is less conservative than the Level 1 assessment. If RQ for the Level 2 assessment is less than 1, it can be determined that the ecosystem would maintain its integrity, and the assessment is terminated. If the RQ is greater than 1, the Level 3 assessment is performed for the detailed assessment. In the Level 3 assessment, the radiation dose for the representative organism of a site is calculated by using the site specific data of occupancy factor, CR and Kd. In addition, the K-BIOTA allows the uncertainty analysis of the dose rate on CR, Kd and environmental medium concentration among input parameters optionally in the Level 3 assessment. The four probability density functions of normal, lognormal, uniform and exponential distribution can be applied.The applicability of the code was tested through the participation of IAEA EMRAS II (Environmental Modeling for Radiation Safety) for the comparison study of environmental models comparison, and as the result, it was proved that the K-BIOTA would be very useful to assess the radiation risk of the wildlife living in the various contaminated environment.

Environmental Pollutants in Streams of Andong District and Insect Immune Biomarker (안동지역 하천의 환경오염물질과 곤충면역 생체지표 분석)

  • Ryoo Keon Sang;Ko Seong-Oon;Cho Sunghwan;Lee Hwasung;Kim Yonggyun
    • Korean journal of applied entomology
    • /
    • v.44 no.2
    • /
    • pp.97-108
    • /
    • 2005
  • Samples of water, soil, and sediment were taken from 10 streams near Andong, Korea in May 2004. To assess the degree of environmental pollution of each stream, chemical pollutants such as total notrogen (T-N), total phosphorus (T-P), chemical oxygen demand (COD), heavy metals, organophosphorus pesticides, organochlorine pesticides, and dioxin-like PCB congeners were analyzed by standard process tests or U.S. EPA methods. In addition, biomarkers originated from insect immune systems of beet armyworm, Spodoptera exigua, were used to analysis of the environmental samples. Except Waya-chun stream showing T-N content of 9.12 mg/L, most streams were contaminated with relatively low levels of overall pollutants in terms of T-N, T-P, and COD, compared to their acceptable environmental levels designated by the Ministry of Environment. Contents of Pb and Cd in samples of each stream were much lower than environmentally permissible levels. However, several times higherconcentrations of Pb and Cd were found in locations at Mi-chun, Kilan-chun, and Hyunha-chun streams, in comparison with other streams. Diazinon, parathion, and phenthoate compounds among organophosphorus pesticides were detected as concentrations of 0.19, 0.40, and $1.13\;{\mu}g/g$, respectively, from soil sample collected in the vicinity of Mi-chun stream. On the other hand, 16 organochlorine pesticides and 12 dioxin-like PCB congeners, known as endocrine disrupting chemicals, selected in this study were not found above the limit of detection. Biomarker analyses using insect immune responses indicated that Waya-chun stream was suspected as exposure to environmental pollutants. Limitation and compensation of both environmental analysis techniques are discussed.

New Technologies for the Removal of Bacteriophages Contaminating Whey and Whey Products as Cheese by-Products: A Review (치즈 부산물인 유청과 유청 제품에 감염된 박테리오파지 제거를 위해 새롭게 개발된 기술: 총설)

  • Kim, Dong-Hyeon;Chon, Jung-Whan;Kim, Hyun-Sook;Kim, Hong-Seok;Song, Kwang-Young;Hwang, Dae-Geun;Yim, Jin-Hyuk;Kang, Il-Byung;Lee, Soo-Kyung;Seo, Kun-Ho
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.93-100
    • /
    • 2014
  • In general, whey obtained from various cheese batches is being reused, so as to improve the texture and to increase the yield and the nutrient value of the various final milk-based products. In fact, re-usage of whey proteins, including whey cream, is a common and routine procedure. Unfortunately, most bacteriophages can survive heat treatments such as pasteurization. Hence, there is a high risk of an increase in the bacteriophage population during the cheese-making process. Whey samples contaminated with bacteriophages can cause serious problems in the cheese industry. In particular, the process of whey separation frequently leads to aerosol-borne bacteriophages and thus to a contaminated environment in the dairy production plant. In addition, whey proteins and whey cream reused in a cheese matrix can be infected by bacteriophages with thermal resistance. Therefore, to completely abolish the various risks of fermentation failure during re-usage of whey, a whey treatment that effectively decreases the bacteriophage population is urgently needed and indispensable. Hence, the purpose of this review is to introduce various newly developed methods and state-of-the-art technologies for removing bacteriophages from contaminated whey and whey products.

  • PDF

Effect of Decay Rate Coefficients with Sulfur Denitrification due to Salt in Seafood Wastewater (수산물 가공폐수내 염분이 황 탈질 반응속도 상수에 미치는 영향)

  • Jo, You-Na;Choi, Yong-Bum;Han, Dong-Joon;Kwon, Jae-Hyouk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.367-377
    • /
    • 2017
  • This study examined the effects of the salinity of seafood wastewater on the sulfur denitrification process. An examination of the denitrification efficiency showed that the optimal EBCT was 1hr at an influent T-N concentration of 20mg/L or lower and 2-3hr at an T-N concentration of 30mg/L. An examination of the denitrification efficiency according to the nitrogen load showed that the legal effluent water quality criterion was satisfied when the influent load was maintained within $0.496kg/m^3/day$. On the other hand, the reactor volume increased when this was applied to the site. Therefore, the influent load should be within $0.372kg/m^3/day$ considering the denitrification and economic efficiency. At a load of $0.248{\sim}0.628kg/m^3{\cdot}day$, the k value was $0.0890{\sim}0.5032hr^{-1}$. The batch experimental results according to the $Cl^-$ concentration showed that at an influent nitrogen concentration of 30.0mg/L, the effect of the denitrification efficiency was not large below the salinity of $7,000mgCl^-/L$, but inhibition occurred above $9,000mgCl^-/L$. Calculations of the reaction rate constant according to the $Cl^-$ concentration showed that the reaction rate constant was $0.1049{\sim}0.2324hr^{-1}$ at a raw wastewater concentration of ${\sim}5,000mgCl^-/L$. In contrast, the k value was $0.1588hr^{-1}$ at $7,000mgCl^-/L$ and $0.1049hr^{-1}$ at $9,000mgCl^-/L$.

A Study on the Tendency of Dose value According to Dose calibrator Measurement Depth and Volume (Dose calibrator 측정 깊이와 용량의 변화에 따른 선량 값의 성향에 대한 고찰)

  • Kim, Jin Gu;Ham, Jun Cheol;Oh, Shin Hyun;Kang, Chun Koo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.24 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Purpose It is intended to figure out the errors derived from changes in depth and volume when measuring the Standard source and 99mTc-pertechnetate by using a Dose calibrator. Then recommend appropriate measurement depth and volume. Materials and Methods As a Dose calibrator, CRC-15βeta and CRC-15R (Capintec, New Jersey, USA) was used, and the measurement sources were 57Co, 133Ba, 137Cs and 99mTc-pertechnetate was also adopted due to its high frequency of use. The Standard source was respectively measured the changes according to its depth without changing the volume, in a range of 0 cm to 15 cm from the bottom of the ion chamber. 99mTc-pertechnetate was measured at each depth by changing the volume with 0.1 mL, 0.3 mL, 0.5 mL, 0.7 mL and 0.9 mL Respectively. And the depth range was from 0 cm to 15 cm at the bottom of the ion chamber. Results In the case of Standard source 57Co, 133Ba, 137Cs and 99mTc-pertechnetate, there were significant differences according to the measurement depth(p<0.05). 99mTc-pertechnetate has a negative correlation coefficient according to the depth, and the error of the measured value was negligible at a depth from 0 cm to 7 cm at 0.3 mL and 0.5 mL, and the range of error increased as the volume increased. Conclusion In clinical practice, it is sometimes installed differently than the Standard depth recommended by the equipment company. If it's measured at the recommended depth and volume, it could be thought that unnecessary exposure of the operator and the patient will be reduced, and more accurate radiation exams will be possible in quantitative analysis.

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability (하상 미지형에 따른 N2O 발생량 변화 효과에 대한 탄소 가용성의 영향)

  • Ko, Jongmin;Kim, Youngsun;Ji, Un;Kang, Hojeong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.917-929
    • /
    • 2019
  • Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.