• Title/Summary/Keyword: 샌드위치 압축

Search Result 38, Processing Time 0.02 seconds

FE Analyses of the Compressive Characteristics of Carbon Fabric/Polymeric Foam for Sandwich Structure (유한요소해석을 이용한 직조 탄소섬유 발포 고분자 샌드위치 구조의 압축특성)

  • Chang Seung Hwan;Cheon Seong Sik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.194-197
    • /
    • 2004
  • In this paper, compressive characteristics of carbon fabric skin with polymeric foam core sandwich structure were investigated by FE analyses and compressive tests of polyurethane foam were also conducted with respect to temperature changes, which were determined by curing processes of epoxy or polyester resin to obtain mechanical behaviour of polyurethane foam. FE analyses indicated variation of parameters with respect to manufacturing pressure, which have comparatively massive effect upon mechanical properties of sandwich structures, i.e. wavelength as well as crimp angle of carbon fabric

  • PDF

Structural test of KSLV-I Payload fairing (KSLV-I 페이로드 페어링 구조시험)

  • Lee, Jong-Woong;Kong, Cheol-Won;Eun, Se-Won;Nam, Gi-Won;Jang, Young-Soon;Shim, Jae-Yeul;Lee, Young-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.900-907
    • /
    • 2013
  • Payload fairing(PLF) protects satellites and related equipment from the external environment. They are separated before the satellite separation. Payload fairing made of composite sandwich materials due to their considerable bending stiffness and strength-to-weight ratio. Payload fairing have compression, shear and bending load during the flight. In this study, To check the strength of PLF and connected part, structural test of PLF accomplished using an actuator and a fixture. Purpose of structural test is to verify the strength of PLF in force of separation spring and combination structural load applied. Test result shows that the PLF have an acceptable margin of safety for the combination structural load and force of separation spring.

Investigation on Strength Recovery after Repairing Impact Damaged Aircraft Composite Laminate (항공기 복합재 라미네이트의 충격 손상 부위 유지 보수 후 강도 복원 평가)

  • Kong, Chang-Duk;Park, Hyun-Bum;Lee, Kyung-Sun;Shin, Sang-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.9
    • /
    • pp.862-868
    • /
    • 2010
  • Development of a small scale aircraft has been carried out for the BASA(Bilateral Aviation Safety Agreement) program in Korea. This aircraft adopted all the composite structures for environmental friendly by low fuel consumption due to its lightness behavior. However the composite structure has s disadvantage which is very weak against impact due to foreign object damages. Therefore the aim of this study is focusing on the damage evaluation and repair techniques of the aircraft composite structure. The damages of composite laminates including the carbon/epoxy UD laminate and the carbon/epoxy fabric face sheets-honeycomb core sandwich laminate were simulated by a drop weight type impact test equipment and the damaged specimen were repaired using the external patch repair method after removing damaged area. The compressive strength test and analysis results after repairing the impact damaged specimens were compared with the compressive strength test and analysis results of undamaged specimens and impact damaged specimens. Finally, the strength recovery capability by repairing were investigated.

Characteristics of Smart Skin for Wireless LAN system under Buckling Load (무선 랜 시스템용 스마트 스킨의 좌굴 특성 연구)

  • 전지훈;유치상;황운봉;박현철;박위상
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.43-49
    • /
    • 2001
  • The characteristics of smart skin for wireless LAN system under compression load are investigated. The smart skin structure is composed of 3 layers of face material and 2 layers of core material. Theoretical formula for determining buckling load is derived by Rayleigh-Ritz method and compared with experimental result. The maximum length of specimen that buckling does not occur is determined by assuming that the compression load is sustained by only face material. In the experiment, if buckling occurs obviously then it follows the theoretical result well. In the process of buckling, the load supporting capability and the antenna property such as radiation pattern and reflection coefficient were examined.

  • PDF

Evaluation of Mechanical Properties and Low-Velocity Impact Characteristics of Balsa-Wood and Urethane-Foam Applied to Impact Limiter of Nuclear Spent Fuel Shipping Cask (사용후핵연료 수송용기 충격완충체에 적용되는 발사목과 우레탄 폼의 기계적 특성 및 저속충격특성 평가 연구)

  • Goo, Jun-Sung;Shin, Kwang-Bok;Choi, Woo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1345-1352
    • /
    • 2012
  • This paper aims to evaluate the low-velocity impact responses and mechanical properties of balsa-wood and urethane-foam core materials and their sandwich panels, which are applied as the impact limiter of a nuclear spent fuel shipping cask. For the urethane-foam core, which is isotropic, tensile, compressive, and shear mechanical tests were conducted. For the balsa-wood core, which is orthotropic and shows different material properties in different orthogonal directions, nine mechanical properties were determined. The impact test specimens for the core material and their sandwich panel were subjected to low-velocity impact loads using an instrumented testing machine at impact energy levels of 1, 3, and 5 J. The experimental results showed that both the urethane-foam and the balsa-wood core except in the growth direction (z-direction) had a similar impact response for the energy absorbing capacity, contact force, and indentation. Furthermore, it was found that the urethane-foam core was suitable as an impact limiter material owing to its resistance to fire and low cost, and the balsa-wood core could also be strongly considered as an impact limiter material for a lightweight nuclear spent fuel shipping cask.

An Experimental Study on the Hybrid Composite Carbody Structure (하이브리드 복합재 철도차량 차체에 대한 시험적 연구)

  • Kim Jung-Seok;Jeong Jong-Cheol;Lee Sang-Jin
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.19-25
    • /
    • 2005
  • This paper has performed an experimental study on the hybrid composite carbody of Korean tilting railway vehicle. The hybrid composite carbody has the length of 23m and is comprised of a 40mm-thick aluminium honeycomb core and 2mm-thick woven fabric carbon/epoxy face sheet. In order to evaluate the structural behavior and safety of the hybrid composite carbody, the static load tests such as vertical load, end compressive load, torsional load and 3-point support load tests have been conducted. The test was performed under Japanese Industrial Standard (JIS) 17105 standard. from the tests, the maximum deflection was 12.3mm and the equivalent bending stiffness of the carbody was $0.81\times10^{14}\;kgf{\cdot}mm^2$. The maximum strain of the composite body was below $20\%$ of failure strain of the carbon/epoxy face sheet.

A Study on the Strength and Stiffness of Multi-Stage Cubic Truss Unit Structures (복합 입체형 정육면체 트러스 단위구조체의 강도 및 강성에 대한 해석 연구)

  • Choi, Jeongho
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.139-145
    • /
    • 2019
  • This paper investigated the strength and stiffness of composite truss unit structures. The model used is a core-filled model combining the Kagome model and the cube truss model. The material properties used for the analysis are 304 stainless steel with elastic modulus of 193 GPa and yield stress of 215 MPa. The theoretical equation is derived from the relative elasticity relation of Gibson - Ashby ratio, the analysis was performed using Deform 3D, a commercial tool. In conclusion, the relative elasticity for this unit model correlates with 1.25 times the relative density and constant coefficient, elasticity is inversely proportional to pore size. The relative compressive strength has a correlation with relative density of 1.25 times. Proof of this is a real experiment, the derived theoretical relationship should further consider mechanical behavior such as bending and buckling. In the future, it is hoped that the research on the elasticity and the stress according to the structure of the three-dimensional space will be continued.

Investigation of Properties of Structural Foam with Different Conformation and via Thermal Aging Condition (구조용 폼의 조성 및 열 노화에 따른 변형특성 관찰)

  • Choe, Jin-Yeong;Kwon, Il-Jun;Park, Sung-Min;Kwon, Dong-Jun
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.122-127
    • /
    • 2018
  • Sandwich composites of carbon fiber reinforced plastic(CFRP) and polymer foam will be used to automobile and aerospace industry according to increasing importance of light weight. In this study, mechanical and heat resistance properties of sandwich composites were compared with type of polymer foam (polyethylene terephthalate(PET), polyvinylchloride(PVC), epoxy and polyurethane). All types of polymer foams were degraded to 30, 60, 120, 180 minutes in $180^{\circ}C$. After heat degradation, the polymer foams were observed using optical microscope and compressive test was performed using universal testing machine(UTM). Epoxy foam had the highest compressive property to 2.6 MPa and after thermal degradation, the mechanical property and structure of foam were less changed than others. Epoxy foam had better mechanical properties than other polymer foams under high temperature. Because the epoxy foam was post cured under high temperature. As the results, Epoxy foam was optimal materials to apply to structures that thermal energy was loaded constantly.