• Title/Summary/Keyword: 상호상관 PIV

Search Result 51, Processing Time 0.028 seconds

A Study on Measurement of Premixed Spray Flame using Cross-correlation PIV (상호상관 PIV를 이용한 예혼합 분무화염의 계측에 관한 연구)

  • Yang Young-Joon;Kim Bong-Hwan
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.259-267
    • /
    • 2005
  • In an attempt to elucidate combustion mechanism or premixed spray flame in detail, both the enlarged photographing, which was performed for spray cross-sectional images of premixed spray flame, and the cross-correlation PIV, which was performed for consecutive time-series images to obtain instantaneous two dimensional flow field, were applied. This study indicated that CW laser as well as pulse laser could be applied for PIV. Furthermore, the results of cross-correlation PIV, which was self-made PIV program, was shown in good agreement with those of PDA. Therefore, it was verified that cross-correlation PIV using CW laser in this study could be effectively used for observing structure of premixed spray flame.

Development of Fast and Exact FFT Algorithm for Cross-Correlation PIV (상호상관 PIV기법을 위한 빠르고 정확한 FFT 알고리듬의 개발)

  • Yu, Kwon-Kyu;Kim, Dong-Su;Yoon, Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.851-859
    • /
    • 2005
  • Normalized cross-correlation (correlation coefficient) is a useful measure for pattern matching in PIV (Particle Image Velocimetry) analysis. Because it does not have a corresponding simple expression in frequency domain, several fast but inexact measures have been used. Among them, three measures of correlation for PIV analysis and the normalized cross-correlation were evaluated with a sample calculation. The test revealed that all other proposed correlation measures sometimes show inaccurate results, except the normalized cross-correlation. However, correlation coefficient method has a weakpoint that it requires so long time for calculation. To overcome this shortcoming, a fast and exact method for calculating normalized cross-correlation is suggested. It adopts Fast Fourier Transform (FFT) for calculation of covariance and the successive-summing method for the denominator of correlation coefficient. The new algorithm showed that it is really fast and exact in calculating correlation coefficient.

Development of High-resolution 3-D PIV Algorithm by Cross-correlation (고해상도 3차원 상호상관 PIV 알고리듬 개발)

  • Kim, Mi-Young;Choi, Jang-Woon;Lee, Hyun;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.410-416
    • /
    • 2001
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity field of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. In this study, stereo photogrammetty was applied for the 3-D matching of tracer particles. Epipolar line was used to decect the stereo pair. 3-D CFD data was used to estimate algorithm. 3-D position data of the first frame and the second frame was used to find velocity vector. Continuity equation was applied to extract error vector. The algorithm result involved error vecotor of about 0.13 %. In Pentium III 450MHz processor, the calculation time of cross-correlation for 1500 particles needed about 1 minute.

  • PDF

A SPACIAL ANALYSIS OF IN-CYLINDER TURBULENCE FLOW IN SI ENGINE USING CROSS CORRELATION PIV (상호상관 PIV기법을 이용한 엔진 실린더내 난류의 공간적 해석)

  • Chung, Ku-Seob;Chung, Yong-Oug
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3038-3043
    • /
    • 2008
  • Tumble or swirl flow is used adequately to promote mixing of air and fuel in the cylinder and to enlarge turbulent intensity in the late time of compression stroke. However, since in-cylinder flow is a kind of transient state with rapid flow variation, that is, non-steady state flow, swirl or tumble flow has not been analyzed sufficiently and not been recognized whether they are available for combustion theoretically yet. In the investigation of intake turbulent characteristics using PIV method, different flow characteristics were showed according to SCV figures. SCV installed engine had higher vorticity, turbulent strength by fluctuation and turbulent kinetic energy than a baseline engine, especially around the wall and lower part of the cylinder. Consequently, as swirl flow was added to existing tumble flow, it was found that fluctuation component increased and flow energy was conserved effectively through the experiment.

  • PDF

Uncertainty Analysis of Cross-Correlation Algorithm based on FFT by PIV Standard Images (표준 영상에 의한 FFT 기반 상호상관 PIV 알고리즘의 불확도 해석)

  • Lee, Suk-Jong;Choi, Jung-Geun;Sung, Jae-Young;Hwang, Tae-Gyu;Doh, Deog-Hee
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.2
    • /
    • pp.71-78
    • /
    • 2005
  • Uncertainty introduced by a cross-correlation algorithm based on FFT has been investigated using PIV standard images. The standard images were generated by the Monte Carlo simulation method. Both bias and random errors from the velocity vector have been analyzed with regard to the particle diameter, displacement, and the number of particles. The uncertainty of velocity is evaluated based upon the IS0/IEC standard. As a result, a total error of $0.26\%$ is included in the PIV cross-correlation algorithm. In addition, the uncertainty budget is presented, where the effect of the above three variables is examined. According to the budget, the variation of the number of particles within the interrogation window mainly contributes to the combined standard uncertainty of the real measured velocity field when excluding the effect of errors by the experiments itself. Finally, the expanded uncertainty is found to be about $12\%$ at the $95\%$ confidence level.

  • PDF

Development and Application of High-resolution 3-D Volume PIV System by Cross-Correlation (해상도 3차원 상호상관 Volume PIV 시스템 개발 및 적용)

  • Kim Mi-Young;Choi Jang-Woon;Lee Hyun;Lee Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.507-510
    • /
    • 2002
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity Held of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. Flows size is $1500{\times}100{\times}180(mm)$, particle is Nylon12(1mm) and illuminator is Hollogen type lamp(100w). The stereo photogrammetry is adopted for the three dimensional geometrical mesurement of tracer particle. For the stereo-pair matching, the camera parameters should be decide in advance by a camera calibration. Camera parameter calculation equation is collinearity equation. In order to calculate the particle 3-D position based on the stereo photograrnrnetry, the eleven parameters of each camera should be obtained by the calibration of the camera. Epipolar line is used for stereo pair matching. The 3-D position of particle is calculated from the three camera parameters, centers of projection of the three cameras, and photographic coordinates of a particle, which is based on the collinear condition. To find velocity vector used 3-D position data of the first frame and the second frame. To extract error vector applied continuity equation. This study developed of various 3D-PIV animation technique.

  • PDF

A Study on Development of Commercial PIV Utilizing Multimedia (멀티미디어 대응 상용 PIV의 국산화개발에 관한 연구)

  • 최장운
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.652-659
    • /
    • 1998
  • The present study is aimed to develop a new PIV operating software through optimization of vector tracking identification including versatile pre-processings and post-processing techniques. And the result exhibits an improved version corresponding various input and output multimedia compared to previous commercial software developed by other makers. An upgraded identification method called grey-level cross correlation coefficient method by direct calculation is suggested and related user-friendly pop-up menu are also represented. Post-processings comprising turbulence statistics are also introduced with graphic output functions.

  • PDF

Flow Visualization in the Branching Duct by Using Particle Imaging Velocimetry (입자영상유속계를 이용한 분기관내 유동가시화)

  • No, Hyeong-Un;Seo, Sang-Ho;Yu, Sang-Sin
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • The objective of this study is to analyse the flow field in the branching duct by visualizing the flow phenomena using the PIV system. A bifurcation model is fabricated with transparent acrylic resin to visualize the whole flow field with the PIV system. Water was used as the working fluid and the conifer powder as the tracer particles. The single-frame and two-frame methods of the PIV system and 2-frame of the grey level correlation method are applied to obtain the velocity vectors from the images captured in the flow filed. The velocity distributions in a lid-driven cavity flow are compared with the so-called standard experimental data, which was obtained from by 4-frame method in order to validate experimental results of the PIV measurements. The flow patterns of a Newtonian fluid in a branching duct were successfully visualized by using the PIV system and the sub-pixel and the area interpolation method were used to obtain the final velocity vectors. The velocity vectors obtained from the PIV system are in good agreement with the numerical results of the 3-dimensional branch flow. The results of numerical analyses and the PIV experiments for the three-dimensional flows in the branch ing duct show the recirculation zone distal to the branching point and the sizes of the recirculation length and height of the tow different methods are in good agreement.

  • PDF

Development of Standard Experimental Apparatus for PIV Performance Evaluation (PIV 성능시험을 위한 표준실험장치 개발)

  • Sung, Jae-Yong;Doh, Deog-Hee;Lee, Suk-Jong;Hwang, Tae-Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.37-43
    • /
    • 2006
  • An experimental apparatus for PIV performance evaluation has been developed. Stardard uncertainty of a two-dimensional cross-correlation PIV system was investigated based upon the standard experimental apparatus, which was devised to model the rigid body rotating flows. For the systematic analysis of the uncertainty introduced by each component (algorithm, CCD camera, frame grabber) of the PIV system, standard images are fed into the component independently. The standard experiments show that 53% of the uncertainty in the present PIV system results from the frame grabber but the errors from the algorithm and digital camera are ignorable.

  • PDF

Hybrid Particle Image Velocimetry Based on Affine Transformation (어파인변환 기반 하이브리드 PIV)

  • Doh, Deog-Hee;Cho, Gyong-Rae;Lee, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.603-608
    • /
    • 2011
  • Since PTV (particle tracking velocimetry) provides velocity vectors by tracking each particle in a fluid flow, it has significant benefits when used for nano- and bio-fluid flows. However, PTV has only been used for limited flow fields because interpolation data loss is inevitable in PTV in principle. In this paper, a hybrid particle image velocimetry (PIV) algorithm that eliminates interpolation data loss was constructed by using an affine transformation. For the evaluation of the performance of the constructed hybrid PIV algorithm, an artificial image test was performed using Green-Taylor vortex data. The constructed algorithm was tested on experimental images of the wake flow (Re = 5,300) of a rectangular body ($6cm\;{\times}3cm$), and was demonstrated to provide excellent results.