• Title/Summary/Keyword: 상호비교시험

Search Result 469, Processing Time 0.027 seconds

Durability evaluation depending on the insert size of conical Picks by the field test (삽입재 크기에 따른 코니컬 커터의 현장 내구성 평가 연구)

  • Choi, Soon-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.49-59
    • /
    • 2019
  • In this study, the durability of conical pick cutter was compared and analyzed by pre- and post-test visual inspection, measurement of weight loss and wear volume through field test on two types of conical pick cutters applied to rotary drum cutter. In the visual inspection, it was found that only 9 inserts were lost in the slim type conical pick cutter. This result show that the thickness of the head cover surrounding a insert was important to maintain the insert during excavation. The weight loss and wear volume of the heavy type conical pick cutter were less than half that of the slim type. From these results, it can be confirmed that heavy type is more useful than slim type in hard rock. It should be noted that, when determining the wear loss of the conical pick cutter, the mutual comparison of the weight measurement and the wear volume measurement results may be different due to the unit weight of the material and the spalling caused by excavation.

Experimental Study on Applying a Transition Track System to Improve Track Serviceability in Railway Bridge Deck Ends (철도교량 단부 궤도의 사용성 향상을 위한 횡단궤도시스템 적용에 관한 실험적 연구)

  • Lim, Jongil;Song, Sunok;Choi, Jungyoul;Park, Yonggul
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.207-216
    • /
    • 2013
  • The components of concrete track (rail and rail fastening system) in railway bridge deck ends are damaged and deteriorated by track-bridge interaction forces such as uplift forces and compression forces owing to their structural flexural characteristics (bridge end rotation). This had led to demand for alternatives to improve structural safety and serviceability. In this study, the authors aim to develop a transition track to enhance the long term workability and durability of concrete track components in railway bridge deck ends and thereby improve the performance of concrete track. A time-history analysis and a three-dimensional finite element method analysis were performed to consider the train speed and the effect of multiple train loads and the results were compared with the performance requirements and German standard for transition track. Furthermore, two specimens, a normal concrete track and a transition track, were fabricated to evaluate the effects of application of the developed transition track, and static tests were conducted. From the results, the track-bridge interaction force acting on the track components (rail displacement, rail stress, and clip stress) of the railway bridge deck end were significantly reduced with use of the developed transition track compared with the non-transition track specimen.

A Study on Evaluation of Modulus of Horizontal Subgrade Reaction through Field Test and Numerical Analysis (현장시험과 수치해석을 통한 수평지반반력계수 산정에 관한 연구)

  • Kang, Byungyun;Park, Minchul;Lee, Sihyung;Jang, Kisoo;Koo, Jagap;Park, Kyunghan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.5-15
    • /
    • 2016
  • For achieving stability and economic construction at a retaining wall construction site, quantitative parameters of soil properties with excavation steps coincides with the actual field site. The main parameters of retaining wall design such as deformation modulus and modulus of horizontal subgrade reaction are common with N value of standard penetration test. Therefore, this study is compared and analyzed about the mutual relationship which is SPT, PBT and PMT for overcoming inconsistency of the existing retaining wall design generalized. In addition, modulus of horizontal subgrade reaction and reduction factor with excavation steps are proposed through back analysis of elasto-plasticity and finite element method with actual field monitoring data. Finally, it is purpose that parameter errors are reduced for applying effective retaining wall design at a construction small and medium-sized.

A Study of Obtaining Reliable Travel Time Information in Downhole Seismic Method (다운홀 기법에서 신뢰성 있는 도달시간 정보 산출 방법에 대한 고찰)

  • Bang, Eun-Seok;Lee, Sei-Hyun;Kim, Jong-Tae;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.17-33
    • /
    • 2007
  • Downhole seismic method is widely used for obtaining shear wave velocity profile of a site because it is simple and economical. Determining accurate travel time of shear wave is very important to obtain reliable result in downhole seismic method. In this paper, comparison study of various travel time determination methods was performed. Numerical study and model chamber test were performed for effective comparison study. Signal traces were acquired by performing downhole test at each numerical simulation and soil box test. Travel time data for each signal traces were determined by using six different methods and Vs profiles were evaluated. Comparing travel time data and Vs profiles with the reference value, the first arrival picking method proved to be ambiguous and unreliable. Other methods also did not always provide accurate results and the magnitude of error was dependent on the signal to noise ratio. Cross-correlation method proved to be the most adequate method for the field application and it was verified additionally with field data.

Ultrasonic Velocity Measurements of Engineering Plastic Cores by Pulse-echo-overlap Method Using Cross-correlation (다중 반사파 중첩 자료의 상호상관을 이용한 엔지니어링 플라스틱 코어의 초음파속도 측정)

  • Lee, Sang Kyu;Lee, Tae Jong;Kim, Hyoung Chan
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • An automated ultrasonic velocity measurement system adopting pulse-echo-overlap (PEO) method has been constructed, which is known to be a precise and versatile method. It has been applied to velocity measurements for 5 kinds of engineering plastic cores and compared to first arrival picking (FAP) method. Because it needs multiple reflected waves and waves travel at least 4 times longer than FAP, PEO has basic restriction on sample length measurable. Velocities measured by PEO showed slightly lower than that by FAP, which comes from damping and diffusive characteristics of the samples as the wave travels longer distance in PEO. PEO, however, can measure velocities automatically by cross-correlating the first echo to the second or third echo, so that it can exclude the operator-oriented errors. Once measurable, PEO shows essentially higher repeatability and reproducibility than FAP. PEO system can diminish random noises by stacking multiple measurements. If it changes the experimental conditions such as temperature, saturation and so forth, the automated PEO system in this study can be applied to monitoring the velocity changes with respect to the parameter changes.

Permeability Characteristics related with Damage Process in Granites (화강암의 손상과정에 따른 투수계수 특성 연구)

  • 정교철;채병곤;김만일;서용석
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.315-325
    • /
    • 2001
  • A series of laboratory tests was conducted to observe damage process by stress and to understand characteristics of permeability related with rock damage. Rock specimens which were composed of the Cretaceous medium grained granites were experienced of damage stress between 65% and 95% of the compressive strength. Rock deformation by damage process was identified with the elastic wave velocity test. Relationship between rock damage and permeability change was also analyzed by water injection test in the laboratory. According to the results of the tests, damage tends to be occurred from stress level of 80% of the compressive strength and it reduces elastic wave velocity. The damaged specimens with stress more than 80% of the compressive strength showed crack density more than 0.6 and persistent length with good connectivity of cracks. They also have higher permeability than that of specimens with crack density less than 0.6. Considered with the above results, the rock specimens used in this study were fully damaged from stress level of 80% of the compressive strength. Crack initiation and propagation by damage caused good connectivity of cracks through rock specimen. These damage process, therefore, brought high permeability coefficient through water flow conduit in the rock specimen.

  • PDF

Development of a Quasi-Three Dimensional Train/Track/Bridge Interaction Analysis Program for Evaluating Dynamic Characteristics of High Speed Railway Bridges (고속철도 교량의 동특성 해석을 위한 준3차원 차량/궤도/교량 상호작용 해석기법의 개발)

  • 김만철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.141-151
    • /
    • 2003
  • Railway bridges are subject to dynamic loads generated by the interaction between moving vehicles and the bridge structures. These dynamic loads result in response fluctuations in bridge members. To investigate the real dynamic behavior of the bridge, therefore, a number of analytical and experimental Investigations should be carried out. In this paper, a train/track/bridge interaction analysis program for evaluating the dynamic characteristics of bridges due to KTX operation in terms of structural safety, operational safety and passenger comfort is developed. To build a practical model of train/track/bridge, Hertzian spring for wheel/rail contact modeling and Winkler element for ballast are applied. This program also used torsional degree of freedom and constraint equation based on geometrical relationship in order to take into consideration three-dimensional eccentricity effect due to the operation on double track through quasi-three dimensional analysis. To verify the developed Program, comparison has been made between the measured results and those of simulation of the typical PSC box bridge(2@40m=80m) of the KHSR bridges.

Development of Fast and Exact FFT Algorithm for Cross-Correlation PIV (상호상관 PIV기법을 위한 빠르고 정확한 FFT 알고리듬의 개발)

  • Yu, Kwon-Kyu;Kim, Dong-Su;Yoon, Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.851-859
    • /
    • 2005
  • Normalized cross-correlation (correlation coefficient) is a useful measure for pattern matching in PIV (Particle Image Velocimetry) analysis. Because it does not have a corresponding simple expression in frequency domain, several fast but inexact measures have been used. Among them, three measures of correlation for PIV analysis and the normalized cross-correlation were evaluated with a sample calculation. The test revealed that all other proposed correlation measures sometimes show inaccurate results, except the normalized cross-correlation. However, correlation coefficient method has a weakpoint that it requires so long time for calculation. To overcome this shortcoming, a fast and exact method for calculating normalized cross-correlation is suggested. It adopts Fast Fourier Transform (FFT) for calculation of covariance and the successive-summing method for the denominator of correlation coefficient. The new algorithm showed that it is really fast and exact in calculating correlation coefficient.

A Comparative Case Study of Flipped Learning in Active Learning Classroom vs. Fixed Classroom (Active Learning Classroom과 고정식 강의실에서의 플립러닝 비교 사례연구)

  • Lee, Sang-Eun;Song, Bong-Shik
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.295-303
    • /
    • 2022
  • This study compares two cases in which flipped learning is applied in the active learning classroom (ALC) and fixed classroom of advanced engineering education. To this end, the difference in pre-learning, academic achievement, and class satisfaction between ALC and fixed classroom flipped learning were compared. The results revealed that students in ALC flipped learning watched more video lectures for pre-learning than those in the fixed classroom flipped learning and achieved higher scores on final tests, though they obtained lower points on midterm exam. In addition, examination of class satisfaction with questions about class factors, instructor factors, and overall satisfaction revealed that ALC flipped learning showed higher satisfaction in all factors than the fixed classroom flipped learning. This case study suggests that the ALC environment, a learning space built to facilitate learner-centered activities, is more effective for flipped learning that requires active interaction in the classroom.

Evaluation of SHCC on Direct Tensile Load using Acoustic Emission Technique (음향방출기법을 이용한 혼입되는 섬유의 종류에 따른 SHCC의 직접인장거동특성 평가)

  • Kim, Yun-Su;Yun, Hyun-Do;Jeon, Esther;Park, Wan-Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.177-180
    • /
    • 2008
  • SHCC shows the high energy tolerance capacity due to the interfacial bonding of the fibers to the cement matrix. For effective material design and application of SHCC, it is needed to investigate the damage process and micro-fracture mechanism of cement matrix reinforced with different types of fibers. The objective of this paper is to investigate the direct tensile response of cement composites reinforced with single and hybrid fibers using acoustic emission(AE) technique. In this study, the correlations between AE signal and result of the direct tensile response of SHCC. For these purposes, three kinds of fibers were used: PET1.5%, PET1.0+PE0.5%, PET1.0%+PVA0.5%. The result of the direct tensile response of SHCC, for the same volume fraction of fibers, ultimate strength of PET-PE specimen was 2.7 times higher than specimens with PET fibers. And from AE signal value, AE event numbers and cumulative energy were different according to kind of fiber because of the different material properties of reinforced fiber.

  • PDF