• Title/Summary/Keyword: 상품평가

Search Result 790, Processing Time 0.02 seconds

Product Value Evaluation Models based on Itemset Association Chain (상품군 연관망 기반의 상품가치 평가모형)

  • Chang, Yong-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.1-17
    • /
    • 2010
  • Association rules among product items by association analysis suggest sales effect among products. These are useful for marketing strategies such as cross-selling and product display etc. However, if we evaluate more practical product values reflecting cross-selling effects, they will be also more useful for the decisions of companies such as product item selection for product assortment and profit maximization etc. This study proposes product value evaluation models with the concept of effective value based on single-item association chain and itemset association chain. In addition to that, we performed experiments with transaction data related to clothing of an online shopping mall in Korea to show the performances of our models. In result, we confirmed that some items increased in effective values compared with their pure values while the others decreased in effective values.

Automatic Product Attribute Extraction from Reviews Using Web Search Engine (상품평 데이터와 웹 검색엔진을 이용한 상품별 평가항목 자동 추출)

  • Lee, Woo-Chul;Lee, Hyun-Ah
    • Annual Conference of KIPS
    • /
    • 2008.05a
    • /
    • pp.107-110
    • /
    • 2008
  • 상품평은 인터넷 쇼핑 이용자들의 최종 구매결정에 큰 영향을 미치는 것으로 알려져 있다. 많은 쇼핑몰에서 상품평 활성화를 위해 노력하고 있지만, 상품평을 모으는 것에만 주력할 뿐 기존에 수집된 상품평을 제공하는 방법에 있어서는 원시적인 수준에 그치고 있다. 상품평을 좀 더 효율적으로 제공하려면 사용자들이 상품평에서 찾게 될 평가항목들을 미리 예측하여 그 항목에 따라 상품평을 분류/요약해서 제공하는 방법을 생각할 수 있다. 본 논문에서는 상품평과 웹 검색엔진을 이용하여 각 상품별 평가항목들을 자동으로 추출하는 방법을 제안한다. 상품평 데이터의 특성상 노이즈가 많기 때문에 먼저 데이터를 정제하고, 정제된 상품평 데이터를 형태소 분석하여 후보명사들을 선택한다. 선택된 후보명사를 웹 검색엔진에 질의하여 반환된 결과 값으로 상품 카테고리와 후보명사 간 연관도를 계산하여 평가항목을 추출한다. 실험은 5개 상품 카테고리의 170,294개 실제 상품평을 대상으로 각 카테고리별 평가항목을 추출하였다.

Automatic Product Feature Extraction for Efficient Analysis of Product Reviews Using Term Statistics (효율적인 상품평 분석을 위한 어휘 통계 정보 기반 평가 항목 추출 시스템)

  • Lee, Woo-Chul;Lee, Hyun-Ah;Lee, Kong-Joo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.497-502
    • /
    • 2009
  • In this paper, we introduce an automatic product feature extracting system that improves the efficiency of product review analysis. Our system consists of 2 parts: a review collection and correction part and a product feature extraction part. The former part collects reviews from internet shopping malls and revises spoken style or ungrammatical sentences. In the latter part, product features that mean items that can be used as evaluation criteria like 'size' and 'style' for a skirt are automatically extracted by utilizing term statistics in reviews and web documents on the Internet. We choose nouns in reviews as candidates for product features, and calculate degree of association between candidate nouns and products by combining inner association degree and outer association degree. Inner association degree is calculated from noun frequency in reviews and outer association degree is calculated from co-occurrence frequency of a candidate noun and a product name in web documents. In evaluation results, our extraction method showed an average recall of 90%, which is better than the results of previous approaches.

Extracting Implicit Customer Viewpoints from Product Review Text (상품 평가 텍스트에 암시된 사용자 관점 추출)

  • Jang, Kyoungrok;Lee, Kangwook;Myaeng, Sung-Hyon
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.53-58
    • /
    • 2013
  • 온라인 소비자들은 amazon.com과 같은 온라인 상점 플랫폼에 상품 평가(리뷰: review) 글을 남김으로써 대상 상품에 대한 의견을 표현한다. 이러한 상품 리뷰는 다른 소비자들의 구매 결정에도 큰 영향을 끼친다는 관점에서 볼 때, 매우 중요한 정보원이라고 할 수 있다. 사람들이 남긴 의견 정보(opinion)를 자동으로 추출하거나 분석하고자 하는 연구인 감성 분석(sentiment analysis)분야에서 과거에 진행된 대다수의 연구들은 크게는 문서 단위에서 작게는 상품의 요소(aspect) 단위로 사용자들이 남긴 의견이 긍정적 혹은 부정적 감정을 포함하고 있는지 분석하고자 하였다. 이렇게 소비자들이 남긴 의견이 대상 상품 혹은 상품의 요소를 긍정적 혹은 부정적으로 판단했는지 여부를 판단하는 것이 유용한 경우도 있겠으나, 본 연구에서는 소비자들이 '어떤 관점'에서 대상 상품 혹은 상품의 요소를 평가했는지를 자동으로 추출하는 방법에 초점을 두었다. 본 연구에서는 형용사의 대표적인 성질 중 하나가 자신이 수식하는 명사의 속성에 값을 부여하는 것임에 주목하여, 수식된 명사의 속성을 추출하고자 하였고 이를 위해 WordNet을 사용하였다. 제안하는 방법의 효과를 검증하기 위해 3명의 평가자를 활용하여 실험을 하였으며 그 결과는 본 연구 방향이 감성분석에 있어 새로운 가능성을 열기에 충분하다는 것을 보여주었다.

  • PDF

Product Evaluation Summarization Through Linguistic Analysis of Product Reviews (상품평의 언어적 분석을 통한 상품 평가 요약 시스템)

  • Lee, Woo-Chul;Lee, Hyun-Ah;Lee, Kong-Joo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.93-98
    • /
    • 2010
  • In this paper, we introduce a system that summarizes product evaluation through linguistic analysis to effectively utilize explosively increasing product reviews. Our system analyzes polarities of product reviews by product features, based on which customers evaluate each product like 'design' and 'material' for a skirt product category. The system shows to customers a graph as a review summary that represents percentages of positive and negative reviews. We build an opinion word dictionary for each product feature through context based automatic expansion with small seed words, and judge polarity of reviews by product features with the extracted dictionary. In experiment using product reviews from online shopping malls, our system shows average accuracy of 69.8% in extracting judgemental word dictionary and 81.8% in polarity resolution for each sentence.

Product Review Summarization through Review Sentence Analysis (상품평 분석을 통한 상품 평가 요약 시스템)

  • Kim, Je-Sang;Jung, Gun-Young;Gwan, In-Ho;Lee, Hyun-Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.113-115
    • /
    • 2013
  • 다수의 상품평 요약은 인터넷 쇼핑몰 고객에게 편의를 제공할 수 있다. 본 논문에서는 상품평 요약 시스템의 성능 향상을 위한 방안을 제안한다. 시스템은 크게 상품평의 평가 항목 추출과 극성 사전 생성, 극성 판별 단계로 구성된다. 평가 항목 추출에서는 외부 연관도의 영향력을 줄이고, 극성 사전 생성에서는 단어 거리 평균을 적용한다. 제안한 방식을 사용하였을 때 평가 항목에 대한 문장의 극성 판별 시 90.8%의 정확율을 보였다.

  • PDF

Data Product Value Evaluation Method for Data Exchange Platform (데이터거래 활성화를 위한 데이터상품가치 평가모델 연구)

  • Kim, Sujin;Lee, Junghyun;Park, Cheonwoong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.34-46
    • /
    • 2021
  • In the domestic data exchanging market, unreasonable pricing of purchase data is consistently mentioned as a major obstacle in data trading. This is a problem caused by the inability to properly evaluate the value of data products due to lack of product information and experience in using them. In order to activate trading, the data exchanges need to provide information that allows consumers to comprehensively judge the value of data products in addition to prices. The cost-based, income-based, and market-based methods, which are mainly applied to data valuation, are insufficient as data valuation methods to stimulate trading and distribution because only price information, a result of valuation from a supplier's point of view, can be shared with consumers. This study aims to develop a measurable valuation method that allows data trading stakeholders (exchanges, suppliers, and consumers) to judge and share the value of data products from a common perspective. To this end, we identified the value drivers of data products, which are considered important in overseas data exchanges and related research, and derived an evaluation method that can quantitatively measure each value driver. In addition, evaluation criteria in the form of a rating table were developed using data products for transactions, and a value evaluation index was developed through stratification analysis (AHP) to enable relative value comparison. As a result of applying the evaluation criteria to actual data products, it was found that the evaluation values were differentiated according to the characteristics of individual data products, so it could be used as a relative value comparison tool.

Automatic Product Review Helpfulness Estimation based on Review Information Types (상품평의 정보 분류에 기반한 자동 상품평 유용성 평가)

  • Kim, Munhyong;Shin, Hyopil
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.983-997
    • /
    • 2016
  • Many available online product reviews for any given product makes it difficult for a consumer to locate the helpful reviews. The purpose of this study was to investigate automatic helpfulness evaluation of online product reviews according to review information types based on the target of information. The underlying assumption was that consumers find reviews containing specific information related to the product itself or the reliability of reviewers more helpful than peripheral information, such as shipping or customer service. Therefore, each sentence was categorized by given information types, which reduced the semantic space of review sentences. Subsequently, we extracted specific information from sentences by using a topic-based representation of the sentences and a clustering algorithm. Review ranking experiments indicated more effective results than other comparable approaches.

협업필터링 추천시스템에서 개인별 선호도의 표준화에 따른 예측성능의 영향

  • Lee, Hui-Chun;Kim, Seon-Ok;Lee, Seok-Jun
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.597-602
    • /
    • 2007
  • 본 연구는 추천시스템에서 협업필터링 알고리즘을 이용하여 특정 상품에 대한 고객의 선호도를 예측함에 있어 고객이 상품에 대해 평가한 선호도 평가치를 고객별로 표준화시켜 예측하여 기존의 예측 정확도를 향상시키는 방법에 대하여 연구하였다. 일반적으로 상품에 대한 고객의 선호도를 평가하기 위하여 절대적 기준의 수치적 척도가 제공되지만 개인에 따라서는 상품에 대한 선호 정도가 절대적 척도에 다르게 반영되어 개인별 선호도에 차이가 발생할 수 있다. 이러한 개인적 특성이 동일한 척도의 평가치로 예측되면 예측 결과의 오차를 크게 할 가능성이 있다. 또한 개인이 평가한 선호도 평가치의 편차가 협업필터링 알고리즘을 통한 선호도 예측 정확도와 밀접한 관계를 가지고 있음을 알 수 있었으며 이러한 문제를 해결하기 위하여 개별 고객이 평가한 선호도 평가치를 표준화시켜 표준화된 선호도 평가치를 이용한 선호도 예측을 실시하였다. 분석결과 표준화된 선호도 평가치를 이용한 예측 결과가 비표준화 선호도 평가치를 이용한 예측 결과보다 예측력이 우수함을 알 수 있었으며 결과에 대한 통계적 분석을 통하여 표준화된 선호도 평가치를 이용한 선호도 예측 방법과 비 표준화 선호도 평가치를 이용한 선호도 예측 방법을 혼합할 경우 선호도 예측 정확도를 더 향상시킬 수 있음을 알 수 있었다.

  • PDF

Item Arrangement Optimization Algorithm Considering Product Characteristics (상품 특성을 고려한 상품 배치 최적화 알고리즘)

  • Cho-Won Lim;Jong-Min Lee;Tae-Yeon Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.18-19
    • /
    • 2023
  • 최근 상품의 특성을 고려하지 않은 박스 크기 선택과 박스 공간 내 비효율적인 상품 배치로 인하여 박스의 파손 문제가 지속적으로 제기되고 있다. 이는 적재하고자 하는 상품의 특성을 고려하지 않고 상품을 대략적으로 배치하기 때문이다. 따라서 본 논문에서는 면적과 무게와 같은 상품의 특성을 고려한 상품 배치 최적화 알고리즘을 제안하여 공간 배치의 비효율성 문제를 최소화하고자 한다. 제안한 상품 배치 최적화 알고리즘은 검색 트리 (search tree)와 상품 특성 기반 평가 함수(evaluation function)로 구성되어 있다. 상품 특성 기반 평가 함수는 면적, 무게 및 바닥에 닿는 면적을 고려하여 설계되었다.