Kim, Tae-Hyeok;Park, Jong-Hae;Gong, Bong-Jae;Gwon, Il-Jun
The Korean Journal of Financial Studies
/
v.14
no.1
/
pp.15-39
/
2008
본 연구에서는 미국, 영국, 한국 금융시장의 주식, 회사채, 국채, 부동산지수와 상품지수로 구성된 포트폴리오에서의 상품지수의 역할을 실증적으로 제시하고자 했다. 일반적인 금융상품으로만 구성된 포트폴리오와 상품지수가 포함된 포트폴리오의 수익률과 위험을 비교 분석하여 상품지수의 포트폴리오 구성요소로서의 타당성을 검증했다. 또한, 국가별 통화정책의 변화에 따라 분석기간을 긴축정책기와 확장정책기로 구분하여 그 성과를 비교함으로써 상품지수가 인플레이션 헤지수단이 될 수 있는지를 확인하고자 하였다. 미국과 영국의 경우 GSCI지수는 긴축기에 다른 금융자산에 비해 위험대비 수익률이 높아 포트폴리오 편입비중이 크며, 포트폴리오의 효율성을 높이는 것으로 분석되었다. 영국의 경우 환율을 적용하기 전과 후의 분석결과가 크게 상이하지 않으나, 한국의 경우 환율을 적용한 GSCI지수의 포트폴리오 편입비중은 미국, 영국시장과 유사한 결과를 보이나, 환율과 GSCI지수를 각각 독립적인 자산으로 편입하여 분석할 경우 그 효과는 미미한 것으로 나타났다. 즉, 환율을 적용하여 편입한 GSCI지수의 포트폴리오 수익률 상승효과 중 상당한 부분이 환율로 인한 것이며, 해외시장의 경우와 단순히 비교하기는 어렵다는 점이다. 따라서, 우리나라의 경우는 미국, 영국과 달리 환율을 적용한 상품지수가 인플레이션에 대한 헤지수단이 되나, 환율효과가 지배적이므로 상품지수 자체의 공헌도는 높지 않다고 평가된다.
현행 일반적으로 쓰여지고 있는 물가지수 산식은 기준시점의 거래량(또는 거래금액)을 상품별 가중치(weight)로 삼는 가중총합방식(weighted aggregate formula, 또는 가중산술평균산식)으로서의 Laspeyres식이라 함은 주지하는 바와 같다. 그것이 상품별로 유통면의 중요성을 분명히 감안하여 있고, 비교시점의 가격변동만이 계산에 반영된다는 점에 있어서 물가지수로서의 실용성이 널리 인정되어 있는 산식이다. 그러나 Lasperyres식의 난점을 또한 많은 것이니 그 가운데 특히 가중치의 고정성과 관련하여 기준시점의 이동에 따른 전후 물가지수의 비연결성은 결정적 결함이라 할 수 있다. 여기에 이 식의 지수적 허구성이 흔히 논의되고, 이른바 Paasche check라 하여 수시로 조사한 거래량(또는 거래금액)에 의하여 물가지수의 가중치로 삼아서 전자를 검정하는 방법도 쓰여지는 형편이다. 필지는 일찌기(1973년) Laspeyres식의 상품별 가중치에 관한 객관적 평가법의 하나로서 산업(따라서 상품)의 연관분석적 수단에 의한 약간의 시안을 발표한 바 없지 않았다. 그것은 요약컨대 산업연관분석에 쓰이는 투입계수표를 중심삼아 한 상품가격이 다른 상품가격에 미치는 파급효과, 따라서 물가에 미치는 파급력을 계산하고, 나아가서 각 상품의 수요 및 공급함수를 도입하여 그들 계수를 추정함으로써 가중치의 객관화를 꾀해 본 것이 전고의 골자이다.
Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.
Communications for Statistical Applications and Methods
/
v.16
no.2
/
pp.249-264
/
2009
Equity-indexed annuities(EIAs) provide their customers with the greater of either the return linked to the underlying index or the minimum guaranteed return. Insurance companies have developed EIAs to attract customers reluctant to buy traditional fixed annuities because of low returns and also reluctant to buy mutual funds for fear of the high volatility in the stock market. This paper proposes a new type of EIA embedded with an outside barrier option with flexible monitoring period in order to increase its participation rate. It also derives an explicit pricing formula for this proposed product, and discusses numerical examples to show relationships among participation rate, barrier level, index volatility and correlation.
Journal of the Korea Society of Computer and Information
/
v.10
no.1
s.33
/
pp.45-52
/
2005
We proposed the product recommendation algorithm mixed the temporal association rule and the exponential smoothing method. The temporal association rule added a temporal concept in a commercial association rule In this paper. we proposed a exponential smoothing temporal association rule that is giving higher weights to recent data than past data. Through simulation and case study in temporal data sets, we confirmed that it is more Precise than existing temporal association rules but consumes running time.
본 연구에서는 전이 엔트로피 개념을 활용하여 주요 상품 선물의 하방 리스크 지수의 정보 흐름을 바탕으로 한 인과관계 네트워크를 구성하였다. 그리고 구성된 네트워크를 활용하여 금융 시장을 분석하였으며, 또한 정보 흐름의 존재 여부를 바탕으로 상품 선물의 하방 리스크 지수의 예측력이 개선될 수 있는지 확인하고자 하였다. 이를 위하여 정보 불확실성의 감소량을 측정하는 전이 엔트로피를 인과관계의 측정 지표로 상정하였으며, 전이 엔트로피 측정 시 발생할 수 있는 유한크기효과(finite size effect)를 조정하는 데 있어서 효과적인 지표인 효율적 전이 엔트로피를 활용하여 정보 흐름 네트워크를 구성하였으며 이를 이용하여 금융 지수 간의 인과관계를 분석하고 EDaR 의 등락 예측에 활용하였다. 그 결과, 금융 시장 지수를 효율적 전이 엔트로피를 이용한 인과관계 네트워크를 활용하여 금융 시장의 복잡계 네트워크 분석이 가능함을 확인하였고, 구성된 네트워크를 활용하여 국내 금융 시장 등락 예측에 있어 더 적은 데이터 열을 활용하여 거의 유사한 예측 결과를 냄으로써 상품 선물 시장 관련 예측의 데이터 열 선택에 활용할 수 있음을 확인하였다.
The electronic stores have realized that they need to understand their customers and to quickly response their wants and needs. To be successful in increasingly competitive Internet marketplace, recommender systems are adapting data mining techniques. One of most successful recommender technologies is collaborative filtering (CF) algorithm which recommends products to a target customer based on the information of other customers and employ statistical techniques to find a set of customers known as neighbors. However, the application of the systems, however, is not very suitable for seasonal products which are sensitive to time or season such as refrigerator or seasonal clothes. In this paper, we propose a new adjusted item-based recommendation generation algorithms called the exponentially weighted collaborative filtering recommendation (EWCFR) one that computes item-item similarities regarding seasonal products. Finally, we suggest the recommendation system with relatively high quality computing time on main memory database (MMDB) in XML since the collaborative filtering systems are needed that can quickly produce high quality recommendations with very large-scale problems.
오늘날 각국에 널리 통용되고 있는 물가지수의 작성법은 반드시 개관적 지표성을 뚜렷이 인정할만한 정립된 이론의 토대 위에 서있는 것같지 않다. 지금 우리에게 보편적 산식이 되어있는 Laspeyres식을 본다 할 때 대상상품의 종목이나 가중치의 결정방법도 문제려니와 기준시점(연도)의 이동에 따른 전후 지수체계의 불가피한 비연결성은 치명적 결함의 조건이다.
Proceedings of the Korean Information Science Society Conference
/
2001.10c
/
pp.466-468
/
2001
전자상점에서 이루어지는 고객의 구매패턴이 온라인 상에서 데이터베이스화되어, 이를 통하여 고객의 취향에 맞는 상품을 제공할 수 있는 많은 알고리즘이 연구되고 있다. 이러한 알고리즘은 전자상점에서 고객의 개별특성을 고려한 상품을 제공하기 위하여, 고객정보 데이터베이스와 거래정의 데이터베이스로부터 연관규칙 등을 추출하여 사용한다. 그러나 시간의 흐름에 민감한 계절상품이나 특선상품과 같이 전자상점의 거래량에 크게 직결될 수 있는 것 등에도 같은 알고리즘을 적용한다면 추천성공률이 떨어질 것이다. 따라서 본 논문에서는 시간의 영향을 많이 받는 상품추천을 위하여, 최근 전자상점 추천시스템으로 효과적인 아이템 기반 협력알고리즘에 지수적 가중치를 적용하여 추천하는 알고리즘을 제안한다. 또한 이러한 추천시스템이 대용량의 고객데이터와 상품데이터에 대한 연산을 수행하고 다수의 고객에게 실시간으로 서비스를 제공하여야 하므로 MMDB를 활용한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.