본 논문에서는 인터넷 상에서 대규모의 유휴 PC들을 연산에 활용하는 PC Cluster시스템에 대해 연구하였다. 인터넷상의 노드는 i)이질적이고, ii)각 노드의 신뢰성이 확보되지 않는 특징을 갖는다. 또한 각각의 노드는 iii)지역 작업을 가질 수 있다. 작업 할당시 연산에 참여하는 노드의 이력 정보와 유휴상태를 함께 고려하여 작업을 할당함으로서 i), ii)를 고려한 PC클러스터링 방법을 제안하였다. 작업 할당시 노드의 이전 작업들의 처리에 대한신뢰성과, 작업 반환 시간을 고려하여 작업을 노드에 할당함으로써 신뢰성이 떨어지는 노드와 평균 반환 시간이 상대적으로 다른 노드들에 비해 큰 노드에 대해서 작업 할당을 가능한 줄임으로써 전체 작업의 신뢰성을 높일 수 있고 평균 작업 반환 시간을 단축시킬 수 있다. 제안한 방법에서는 iii)의 지역 작업을 가질 수 있는 인터넷상의 서로 다른 성능의 이질적인PC로 Cluster를 구축할 경우 보다 적합한 Self-Scheduling을 사용함으로서 효율적으로 작업할당이 가능하도록 하였다. 제안한 방법은 지역 작업을 갖고 있는 인터넷상의 대규모 PC들로 구성된 신뢰성 있는 PC클러스터 구축을 가능하도록 한다.
컴포넌트 기반의 소프트웨어 개발이 소프트웨어 복잡성, 비용, 그리고 품질을 해결하기 위한 새로운 대안으로 소개되고 있다. COM, Enterprise JavaBeans, CORBA 컴포넌트 모델등과 같은 다양한 컴포넌트 아키텍쳐들이 소개되고 있으며 컴포넌트 기반의 소프트웨어 개발 방법론과 여러 CASE 도구들이 이를 지원하고 있다.[1,2,3,4]. 그러나 현재 컴포넌트를 구현할 수 있는 기술은 제시되어 있지만 컴포넌트를 모델링하는 기법들에 대한 연구는 미약한 상태이다. 본 논문에서는 도메인 분석에서 공통성과 가변성 추출 및 클러스터링 기법을 이용한 컴포넌트를 분석하는 기법을 제시한다. 즉 컴포넌트 추출 기법, 컴포넌트의 핫스팟(또는 가변성)표현 기법, 컴포넌트 요구사항 정의 기법 등을 제시한다. 컴포넌트 개발에 있어서 이러한 모델링 기법을 적용함으로써 컴포넌트를 효율적으로 개발할 수 있을 뿐만 아니라 재사용성이 높은 고품질의 컴포넌트 개발을 지원할 수 있다.
본 논문에서는 운행중인 차량이 수집한 위치별 교통 이벤트 (지체, 정체, 사고, 노면상태 등)를 다른 운행 차량과 실시간으로 공유하여 안전운행 서비스를 제공하기 위한 방법을 제안한다. 운행중인 차량은 차량내의 스마트 기기나 전용 기기를 이용해 수집한 교통이벤트를 실시간으로 서버로 전송하고 서버는 전송된 교통이벤트를 위치별, 시간별로 색인하고 중복된 교통이벤트를 분류하여 저장한다. 이런 모든 과정은 처리 속도 향상을 위해 Spark의 RDD를 이용해서 인-메모리에서 처리된다.
축산폐수는 축사가 대부분 상수원보다 상류지역에 산재하고 있어 이를 효과적으로 관리하기 어려우나, 연속 회분식 반응기(Sequencing Batch Reactor, SBR)는 장치가 간단하고 경제성이 우수하여 축산폐수처리에서 효율적으로 적용될 수 있다. 본 연구에서는 DO(Dissolved Oxygen)과 ORP(Oxidation-Reduction Potential)을 이용하여 지식기반 고장진단 시스템을 제안하였다. 실시간으로 얻어진 ORP, DO값들을 전처리하여, [ORP], [DO]외에 [ORP DO]합성data와 ORP, DO의 특징백터의 합에서 얻어진 fusion data의 총 4개의 data set을 이용하여 각각에 대한 진단과 분류성능을 검토하였다. 이 값을 이용하여 FCM (fuzzy C-mean) 클러스터링 한 후, K-PCA과 LDA로 차원축소시켜 특징백터를 추출하였다. 그리고 Hamming distance로 test data와 특징백터의 거리를 계산하여 각 class를 F1에서 F8까지 분류하였다. 그 결과 데이터를 그대로 이용하는 것 보다 차분데이터형태로 이용하는 것이 우수했으며 그 중 fusion 데이터의 결과가 다른 것들보다 향상된 결과를 보였다. 그리고 K-PCA와 LDA를 결합한 결과가 다른 방법에 비해 우수한 결과를 보였으며 fusion method를 이용한 최고인식율은 98.02%를 나타내었다.
본 논문에서는 질병에 대한 전문적인 지식이 부족한 일반인들을 대상으로 스스로 자신의 건강 상태를 쉽게 파악하고, 조금씩 진화하는 질병 바이러스에 따른 증상의 변화를 진단할 수 있는 퍼지 ART 알고리즘을 이용한 한방 자가 진단 및 학습 시스템을 제안한다. 제안된 한방 자가 진단 및 학습 시스템은 72가지 한방 질병과 각 질병에 대한 증상을 분석하여 데이터베이스로 구축하고 구축된 데이터베이스 정보를 기반으로 퍼지 ART 알고리즘을 적용하여 사용자의 질병을 도출한다. 본 논문에서는 사용자가 자신의 대표 증상을 제시하면 해당 증상을 포함하는 질병들을 도출한다. 도출된 질병들의 세부 증상들을 사용자가 입력 벡터로 제시하면 퍼지 ART 알고리즘을 적용하여 세부 증상에 대한 질병들을 클러스터링한 후, 세부 증상에 대한 질병의 소속 정도를 제공한다. 본 논문에서 제시한 시스템을 한의학 전문의가 분석한 결과, 본 논문에서 제사한 시스템이 한방 질병의 보조 진단으로서의 가능성을 확인하였다.
본 논문은 서버를 구성할 수 있는 방식 중의 하나인 Cold-standby 방식을 이용하여 리눅스를 기반으로 한 고가용의 웹 서버 설계 및 구현에 대해 그 방안을 제시하고자 한다. Cold-standby 방식은 프라이머리 서버와 필요시 그 기능을 대신하는 백업 서버로 구성되며, 서비스를 제공하는 프라이머리 서버에 결함이 발생하여 서비스를 제공할 수 없을 경우 백업 서버가 그 역할을 대신하는 동작 방식이다. 프라이머리 서버에서 백업 서버로의 스위칭은 리눅스에서 오픈 소스로 제공하는 heartbeat 기법을 이용하여 프라이머리 서버의 결함발생시 백업 서버로의 스위칭이 가능하며, 프라이머리 서버의 과중한 트래픽으로 인해 발생할 수 있는 오버헤드를 줄이기 위해 실제 서비스를 처리하는 리얼 서버들을 클러스터링하였다. 또한 mon 기법을 이용하여 리얼 서버들의 상태를 모니터링함으로써 리얼 서버들의 추가 및 삭제가 용이하며, 웹 서버를 위한 하드웨어 및 소프트웨어 기법의 고가용을 제공함으로써 클라이언트에 대하여 안정성 및 신뢰성을 보장한 고가용의 서비스를 제공하는 웹 서버를 구현하였다.
많은 ISP업체와 서버 관리자들은 자신의 시스템 향상을 위하여 많을 비용을 쏟아 붇고 있지만 그 결과는 비관적이다. 지금까지는 하드웨어적인 성능만을 고려하였으나, 최근에는 리눅스를 탑재하여 낮은 가격과 높은 가용성을 가지면서, 증가하는 네트워크 요청에 효과적으로 대응하기 위한 해결책으로 여러 대의 호스트로 구성되는 클러스터링 기술이 각광을 받고 있다. 또한 클러스터는 저렴한 호스트들로 구성되므로 구축 비용이 절감되는것 뿐만 아니라, 일부 호스트가 고장 나더라도 다른 호스트는 네트워크 작업 분담을 재설정하여 정상적으로 동작함으로 가용성이 항상 유지될 수 있다는 것을 보여준다. 최근 군에서도 정보화 과학화의 열풍에 힘입어 그 어느때보다도 업무의 전산화, 정보화에 박차를 가하고 있는 실정이다. 이로 인한 군업무에 적용되는 중대형 서버의 증가와 1인 1PC정책에 의한 클라이언트의 증가, 네트웍 인프라 구축에 심혈을 기울이고 있다. 그러나 사용자의 요구만큼 군환 경하에서의 정보화 업무를 감당하는 서버의 역량은 제한이 있다. 군업무의 특수성에 비추어 볼때에도 사회의 금융업무와 마찬가지로 중단없는 서비스의 수행과 서버의 안정화는 군전산의 가장 중요한 요소중의 하나임에 불구하고 아직까지도 현실성은 많이 미비한 상태이다. 본 연구는 이와 같은 문제를 해결하기 위하여 NAS와 SAN개념(네트웍기반)을 도입하여 군 서버 구축 새로운 패러다임을 제공하여 업무의 통폐합과 함께 서버의 통폐합의 전초단계인 무정지 클러스터링 서버의 구축방안을 제시하여 군정보화, 과학화의 초석을 다지는 계기로 삼고자 한다.위상변화에 대한 적응성을 높일 수 있도록 한다. SQL Server 2000 그리고 LSF를 이용하였다. 그리고 구현 환경과 구성요소에 대한 수행 화면을 보였다.ool)을 사용하더라도 단순 다중 쓰레드 모델보다 더 많은 수의 클라이언트를 수용할 수 있는 장점이 있다. 이러한 결과를 바탕으로 본 연구팀에서 수행중인 MoIM-Messge서버의 네트워크 모듈로 다중 쓰레드 소켓폴링 모델을 적용하였다.n rate compared with conventional face recognition algorithms. 아니라 실내에서도 발생하고 있었다. 정량한 8개 화합물 각각과 총 휘발성 유기화합물의 스피어만 상관계수는 벤젠을 제외하고는 모두 유의하였다. 이중 톨루엔과 크실렌은 총 휘발성 유기화합물과 좋은 상관성 (톨루엔 0.76, 크실렌, 0.87)을 나타내었다. 이 연구는 톨루엔과 크실렌이 총 휘발성 유기화합물의 좋은 지표를 사용될 있고, 톨루엔, 에틸벤젠, 크실렌 등 많은 휘발성 유기화합물의 발생원은 실외뿐 아니라 실내에도 있음을 나타내고 있다.>10)의 $[^{18}F]F_2$를 얻었다. 결론: $^{18}O(p,n)^{18}F$ 핵반응을 이용하여 친전자성 방사성동위원소 $[^{18}F]F_2$를 생산하였다. 표적 챔버는 알루미늄으로 제작하였으며 본 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임
병원을 방문하는 환자의 질병은 환경과 생활 습관에 따라 같은 질병도 서로 다른 증상이 발생할 수 있다. 최근 환자를 대상으로 제공되는 의료 서비스는 질병에 따라 환자 증상을 분석하여 치료 방법을 선택할 수 있는 환경으로 변화하고 있다. 본 논문에서는 같은 질병을 앓고 있는 환자들의 건강상태를 파악하여 질병 정도에 따라 치료 방법이 달라질 수 있기 때문에 환자 질병 정보에 따른 치료 방법을 그룹핑하여 효율적으로 관리할 수 있는 질병 관리 기법을 제안한다. 제안 기법은 환자 질병 정보를 빅 데이터화하여 의료진의 진료 효율성을 향상시킬 수 있을 뿐만 아니라 환자의 치료 만족도를 향상시킬 수 있는 특징이 있다. 제안 기법은 환자 동의하에 같은 질병을 앓고 있는 환자들의 질병 정보를 소그룹으로 클러스터링하여 빅 데이터 처리가 가능하다. 또한, 제안 기법은 환자 질병 정보에 따른 치료 방법을 특정 키워드를 통해 손쉽게 검색할 수 있는 장점이 있다. 실험 결과, 제안 기법은 기존 기법에 비해 업무 효율성 측면에서 23% 향상되었으며, 질병 관리 시간도 11.3% 향상된 결과를 얻었다. 설문 조사를 통해 살펴본 의료 서비스에 대한 환자 만족도는 31.5% 높은 결과를 얻었다.
본 논문에서는 애견 질병에 대한 전문적인 지식이 부족한 일반인들을 대상으로 자신의 애견 건강 상태를 파악할 수 있는 진단 시스템을 제안한다. 제안된 진단 시스템은 105가지 질병과 각 질병의 증상을 데이터베이스에 구축하여 입력된 증상을 통해서 애견의 질병을 도출한다. 신경망의 자율 학습 방법인 ART2 알고리즘을 적용하여 질병을 클러스터링하고 그 결과 값인 클러스터의 출력값과 연결강도를 데이터베이스에 저장한 후 질병의 증상과 관련된 질의 결과를 입력 벡터로 제시하여 학습된 질병 정보와 비교하여 애견의 건강 상태를 진단한다. 애견의 건강 상태를 진단하는데 있어서 질병과 증상의 정확한 정보는 매우 중요하다. 따라서 본 논문에서는 질병과 증상의 정보를 데이터베이스로 구축하고 질병과 증상 정보를 효율적으로 관리할 수 있도록 하였다. 제안된 진단 시스템을 구현하여 수의학 전문의가 분석한 결과, 본 논문에서 제안한 시스템이 애견 질병의 보조 진단 시스템으로서의 가능성을 확인하였다.
본 논문은 디지털 통신 채널의 등화를 위한 자력 RBF 신경망 등화기를 제안한다. RBF 신경망을 이용한 등화기에서, 이상적인 채널 상태인 RBF 센터를 정확하고 빠르게 추정하는 것이 가장 중요하다. 그러나, 기존의 RBF 등화기는 채널 상태의 개수를 사전에 알아야 하며, 많은 수의 센터가 필요하다는 단점을 지니므로 실제 통신 시스템에 이용되지 않는다. 본 논문에서 제안하는 자력 RBF 신경망 등화기는 등화에 필요한 RBF 센터를 새로운 추가 기준과 제거 기준에 의해 등화기로 입력되는 신호 중에서 스스로 선택하기 때문에 채널 상태의 개수에 대한 사전 정보 없이도 등화가 가능하다. 또한 제안된 등화기는 LMS 알고리즘과 클러스터링을 이용하는 훈련 과정을 통해 기존 RBF 등화기보다 적은 센터만으로도 등화가 가능한 장점을 갖는다. 선형 및 비선형 채널과 표준 전화 채널에서, 제안한 등화기와 최적 Bayesian 등화기의 BER 성능, 심볼결정 경계, 센터 수 등을 비교하였다. 그 결과 제안한 등화기는 Bayesian 등화기와 거의 동일한 성능을 나타냄을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.