• Title/Summary/Keyword: 상추 잎

Search Result 108, Processing Time 0.044 seconds

Effects of Red/Blue Light Ratio and Short-term Light Quality Conversion on Growth and Anthocyanin Contents of Baby Leaf Lettuce (적색/청색광의 비율 및 수확 전 광질변환이 어린잎상추의 생육 및 안토시아닌 함량에 미치는 영향)

  • Lee, Jun-Gu;Oh, Sang-Seok;Cha, Seon-Hwa;Jang, Yoon-Ah;Kim, Seung-Yu;Um, Young-Chul;Cheong, Seung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.351-359
    • /
    • 2010
  • To establish the optimum artificial light illumination method for baby leaf lettuce in closed plant factory system, the effects of red/blue light quality and short-term light quality conversion on growth and anthocyanin content were investigated. The growth of 'Hongha' lettuce was most favorable under red single wavelength LED light after 23 days of treatment, sequentially followed by the growth under red/blue mixed light, blue light, and fluorescent light. Total anthocyanin content in the mixed red/blue light (R57-B43) was 4.1-fold and 6.9-fold increased compared to the red LED and fluorescent light, respectively. With increasing the blue light ratio to 43%, the growth of lettuce was significantly decreased, while the relative chlorophyll content and Hunter's $a^*$ value was increased, indicating that the red/blue light ratio inversely affects on growth and anthocyanin pigment development. By changing light quality from red to red/blue mixed light source (R57-B43) for 9 days before harvest, the growth rate decreased compared to the continuous red light illumination, while the anthocyanin content dramatically increased compared to either red LED or fluorescent light. Whereas, when the light source was changed to red light, the growth rate was increased but anthocyanin content was reversely decreased. The result demonstrated that both growth and anthocyanin expression could be effectively regulated by shifting of light quality between red and red/blue mixed light source at a specific growth stage of lettuce in a plant factory.

Comparison of Convolutional Neural Network (CNN) Models for Lettuce Leaf Width and Length Prediction (상추잎 너비와 길이 예측을 위한 합성곱 신경망 모델 비교)

  • Ji Su Song;Dong Suk Kim;Hyo Sung Kim;Eun Ji Jung;Hyun Jung Hwang;Jaesung Park
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.434-441
    • /
    • 2023
  • Determining the size or area of a plant's leaves is an important factor in predicting plant growth and improving the productivity of indoor farms. In this study, we developed a convolutional neural network (CNN)-based model to accurately predict the length and width of lettuce leaves using photographs of the leaves. A callback function was applied to overcome data limitations and overfitting problems, and K-fold cross-validation was used to improve the generalization ability of the model. In addition, ImageDataGenerator function was used to increase the diversity of training data through data augmentation. To compare model performance, we evaluated pre-trained models such as VGG16, Resnet152, and NASNetMobile. As a result, NASNetMobile showed the highest performance, especially in width prediction, with an R_squared value of 0.9436, and RMSE of 0.5659. In length prediction, the R_squared value was 0.9537, and RMSE of 0.8713. The optimized model adopted the NASNetMobile architecture, the RMSprop optimization tool, the MSE loss functions, and the ELU activation functions. The training time of the model averaged 73 minutes per Epoch, and it took the model an average of 0.29 seconds to process a single lettuce leaf photo. In this study, we developed a CNN-based model to predict the leaf length and leaf width of plants in indoor farms, which is expected to enable rapid and accurate assessment of plant growth status by simply taking images. It is also expected to contribute to increasing the productivity and resource efficiency of farms by taking appropriate agricultural measures such as adjusting nutrient solution in real time.

High Frequency Organogenesis and Plant Regeneration in Tissue Cultures of Lettuce Seedling Explants (상추 유식물체 절편의 조직배양에 의한 고빈도 기관발생과 식물체 재분화)

  • Jung, Min;Woo, Je-Wook;Jung, Won-Joong;Yoo, Jang-Ryul
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.219-222
    • /
    • 1999
  • To induce adventitious buds, hypocotyl and cotyledonary explants from 7 to 10 day-old seedlings of lettuce (Lactuca sativa L.: two Japanese cultivars of crisphead lettuce and four Korean cultivars of leaf lettuce) were cultured or Murashige and Skoog (MS) and Schenk and Hildebrandt (SH) media supplemented with BA and NAA in the light for five weeks. Cotyledonary explants produced adventitious shoots at greater frequencies than hypocotyl explants. MS medium was more favorable to adventitious shoot formation than HS medium. Combination of 0.5 mg/L BA and 0.1 to 1 mg/L HPh in MS medium led to the greatest frequency (86%) in adventitious shoot formation. Creator than 95% of shoots excised from explants were rooted when cultured on MS basal medium.

  • PDF

Effect of Short Term Cold Treatment to Rhizosphere on Nitrate Concentration in Lettuce Plant under Hydroponic Culture System (단기간 근귄 저온처리가 수경재배 상추의 질산태 질소 함량 미치는 영향)

  • Choi, Seung-Ju;Yang, Jin-Chul;Sa, Tong-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.1
    • /
    • pp.69-73
    • /
    • 2002
  • Lettuce (Lactuca sativa L.) plants were grown under hydroponic system to characterize the diurnal change of nitrate concentration and nitrate uptake rate and to examine the effect of short term cold treatment to rhizosphere on nitrate concentration and uptake rate in lettuce plant. The nitrate concentrations in midrib were two times higher than those in leaf. Nitrate concentration in the shoot reached to minimum (8.7 mg-N/GDW) at 14:00 and, thereafter, increased continuously until 23:00. During 11:00$\sim$17:00, nitrate uptake by lettuce plant was maximum (4.8 mg-N/GDW-Root/hr). Short term cold treatment reduced nitrate concentration in the shoot by 14$\sim$18%, and nitrate uptake rate by 50$\sim$55%, respectively. These results showed that short term cold treatment before harvest could be applied for the purpose of reduction of nitrate concentration in the leaf under hydroponic culture.

Effect of COY (Cooking Oil and Yolk mixture) and ACF (Air-circulation Fan) on Control of Powdery Mildew and Production of Organic Lettuce (난황유와 공기순환팬의 상추 흰가루병 방제효과 및 생산에 미치는 영향)

  • Jee, Hyeong-Jin;Ryu, Kyung-Yul;Park, Jong-Ho;Choi, Du-Hoe;Ryu, Gab-Hee;Ryu, Jae-Gee;Shen, Shun-Shan
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.51-56
    • /
    • 2008
  • Powdery mildew of lettuce that is a newly reported disease became a threat to organic cultivation of lettuce in Korea since the disease caused by Podosphaera fusca resulted in a half of yield loss in heavily infected fields. To improve micro-environmental conditions around lettuce, ACF (air-circulation fan) was installed on inside roof of plastic house at 6 m intervals. The ACF increased 57% of lettuce yield and reduced 71.4% of lettuce seedling death. COY (cooking oil and yolk mixture) consisted of cooking oil 0.3% and egg yolk 0.08% reduced lettuce seedling death from 89.3% to 92.9% under the greenhouse. Seven-day interval spray of COY resulted in high control values of powdery mildew of lettuce ranging from 89.6% to 96.3%, which was comparable to a fungicide, Azoxystrobin. Lettuce yield was increased about two times compared to a non-treated conventional cultivation. Qualities of lettuce such as hardness and chlorophyll content were also improved by COY and ACF combination. Effect of COY on control of the disease was improved when $CaCO_3$ or $SiO_2$ 1,000 ppm was supplemented. Results indicated that the COY made of cooking oil such as canola emulsified with yolk was highly effective on control of powdery mildew of lettuce and suitable for organic agriculture, especially when combined with ACF.

Characterization of Transgenic Lettuce (Lactuca sativa L.) Using a BL1 Gene Encoding Bromelain Isolated from Pneapple (제주산 파인애플 유래 Bromelain관련 유전자 (BL1)를 이용반 형질전환 상추의 특성)

  • Jung, Yu-Jin;Kim, Gi-Hyun;Choi, Jang-Sun;Lee, Soon-Youl;Nou, Il-Sup;Park, Jin-Heui;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • To clarify the roles of bromelain in plants, we isolated BL1 gene encoding bromelain from pineapple stem tissues and sequenced. The full length cDNA is 933 bp and encodes a polypeptide of 311 amino acid residues. The cDNA is most similar 94% at the amino acid level to bromelain previously isolated from pineapple (BAA21929). Explants of Lactuca sativa were co-cultivated with Agrobacterium tume-faciences LBA 4404 strains containing nptII and BL1 gene for transformation. Through initial selection of regenerated explants by culturing on a kanamycin and carbenicillin containing MS medium, multiple shoots were obtained after 2 months of culture. For a complementary step of selection, putative transgenic shoots were transferred to 1/2 Ms basal medium supplemented with 100 mg/L kanamycin and 500 mg/L carbenicillin. The selected shoots were obtained T1 generation seeds with emasculation, and tested with PCR analysis using 35S promoter and BL1 specific primers whether BL1 gene was introduced to genome of the plants. These results confirmed that produced the specific PCR bands in the putative transgenic lines. Additionally the Northern blot and endo protease activity showed that transcripts of BL1 gene were detected in transgenic lines. Theses results suggest that BL1 gene be successfully integrated and transcripted in the transgenic lettuce plants.

Analysis of growth pattern, gene expression and flavonoid contents under LED light wavelength in Lettuce (Lactuca sativa L.) (상추에서 LED광질에 따른 플라보노이드 생합성 관련 유전자들의 발현 및 이차대사 산물의 성분 분석)

  • Jung, Yu Jin;Kang, Dae Hyun;Tsevelkhoroloo, Maral;Moon, Jun Kwan;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.104-110
    • /
    • 2015
  • We analyzed the effects of various LED light treatments (red 655 nm, blue 456 nm, white and mixed light) on growth pattern, gene expression and flavonoid contents in lettuce leaf. Plants treated with mixed light (red+blue+white) showed better growth performance than those treated with single LED and fluorescent lamp (FL). Expression analysis of the eight genes involved in flavonoid biosynthesis in plants treated with LED light was examined. Results showed that red lettuce grown under mixed light showed high expression levels of LsC4H, LsF3H and LsDRF genes. Morever, the same treatment plants possessed higher content of gallic acid, chlorogenic acid and quercetin contents than those in plants exposed to single light. However, the highest total anthocyanin content was identified in plants treated with red+blue light and the lowest content was identified in plants exposed to white fluorescent lamp and single LED light condition. Thus, this study indicates that the ratio of blue to red LEDs is important for the morphology, growth, and phenolic compounds with anthocyanin properties in the two lettuce cultivars tested.

Effects of $\textrm{CO}_2$ Enrichment During Seedling Stage on the Effectiveness of $\textrm{CO}_2$ Enrichment after Transplanting in Leafy Vegetables (엽채류 육묘시 $\textrm{CO}_2$ 시용이 정식 후 $\textrm{CO}_2$ 시용 효과에 미치는 영향)

  • 김일섭;신석범;전익조
    • Journal of Bio-Environment Control
    • /
    • v.11 no.1
    • /
    • pp.35-39
    • /
    • 2002
  • This study was conducted to investigate the effect of early $CO_2$ enrichment during seedling stage on long-term $CO_2$ enrichment after transplanting in the culture of pat-choi (Brassica campesris L), spinach (Spinacia oeracea L.), and leaf lettuce (Lactuca saliva L). During seedling stage, $CO_2$enrichment had significantly higher fresh and dry weight and leaf area of the top parts (above ground) of all three plant species than the control (no $CO_2$ enrichment). About 53%, 70% , and 40% increase in fresh weight of the top parts of pak-choi, spinach, and leaf lettuce were observed, respectively. Also, in seedling stage, dry weights of roots of spinach and leaf lettuce were significantly increased by early $CO_2$ enrichment. Relative fresh weight increment, compared with fresh weight of the control, in the top parts of roll three plants showed the highest values in 10 days after $CO_2$ enrichment treatment. In the long-term $CO_2$ enrichment experiment, early $CO_2$ enrichmented plants had 20% greater leaf area than the control in all three leafy vegetables. Fresh and dry weights of top parts of early $CO_2$-treated plants were also increased from 10 to 20%, as compared with the control plants. However, these increasement rates in the long-term $CO_2$ enrichment were lower than those seedling stage, which had 30-60% increment-rates. After transplanting, photosynthetic rate of each leafy vegetable in the control treatment slowly decreased, but those rates of early $CO_2$ enriched plants rapidly decreased.

Growth and Anthocyanins of Lettuce Grown under Red or Blue Light-emitting Diodes with Distinct Peak Wavelength (상이한 피크파장의 적색광 및 청색광 발광다이오드 조사에 따른 상추의 생장 및 안토시아닌)

  • Lee, Jae Su;Kim, Yong Hyeon
    • Horticultural Science & Technology
    • /
    • v.32 no.3
    • /
    • pp.330-339
    • /
    • 2014
  • Growth and anthocyanins of lettuce (Lactuca sativa L., 'Mid-season') grown under LED lamps with blue light in the range of 430-470 nm or with red light in the range of 630-670 nm were analyzed in this study. Cool-white fluorescent light was used a s the control. P hotosynthetic photon flux, p hotoperiod, air temperature, relative humidity, and $CO_2$ concentration in a closed plant production system were $201{\pm}2\;{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 16/8 hours (day/night), $22/18^{\circ}C$, 70%, and $400{\mu}mol{\cdot}mol^{-1}$, respectively. At 21 days after light quality treatment, growth characteristics and anthocyanins content of lettuce as affected by the peak wavelength of blue or red LED were significantly different. Among peak wavelengths treated in this stusy, R1 treatment (peak wavelength 634 nm) and R6 treatment (peak wavelength 659 nm) were effective for increasing leaf width, leaf area, shoot fresh weight, and photosynthetic rate of lettuce. B5 treatment (peak wavelength 450 nm) and B4 treatment (peak wavelength 446 nm) increased the anthocyanins concentration and chlorophyll content in lettuce leaves, respectively. Anthocyanins in lettuce leaves increased linearly with decreasing hue value of leaf color and with increasing SPAD value of lettuce leaves. From these results, it was concluded that the red LED with peak wavelengths of 634 nm and 659 nm and the blue LED with peak wavelengths of 450 nm can be used as potential light spectra for increasing the yield and anthocyanins accumulation of leafy vegetable.

Spectral Response of Red Lettuce with Zinc Uptake: Pot Experiment in Heavy Metal Contaminated Soil (아연섭취에 따른 적상추의 분광학적 반응: 중금속 오염토양에서의 반응실험)

  • Shin, Ji Hye;Yu, Jaehyung;Kim, Jieun;Koh, Sang-Mo;Lee, Bum Han
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • This study investigates the spectral response of red lettuce (Lactuca sativa var crispa L.) to Zn concentration. The control group and the experimental groups treated with 1 mM(ZnT1), 5 mM(ZnT2), 10 mM(ZnT3), 50 mM(ZnT4), and 100 mM(ZnT5) were prepared for a pot experiment. Then, Zn concentration and spectral reflectance were measured for the different levels of Zn concentration in red lettuce. The Zn concentration of the control group had the range of 134-181 mg/kg, which was within the normal range of Zn concentration in uncontaminated crops. However, Zn concentration in the experimental group gradually increased with an increase in concentration of Zn injection. The spectral reflectance of red lettuce showed high peak in the red band due to anthocyanin, high reflectance in the infrared band due to the scattering effect of the cell structure, and absorption features associated with water. As Zn concentration in red lettuce leaves increased, the reflectance increased in the green and red bands and the reflectance decreased in the infrared band. The correlation analysis between Zn concentration and spectral reflectance showed that the reflectance of 700-1300 nm had a significant negative correlation with Zn concentration. The spectral band is a wavelength region closely related to the cell structure in the leaf, indicating possible cell destruction of leaf structure due to increased Zn concentration. In particular, 700-800 nm reflectance of the infrared band showed the strongest correlation with the Zn concentration. This study could be used to investigate the heavy metal contamination in soil around mining and agriculture area by spectroscopically recognizing heavy metal pollution of plant.