• Title/Summary/Keyword: 상수역학

Search Result 203, Processing Time 0.029 seconds

Ki Ho School of Neo-Confucianism on Yi Xue Qi Meng in Later Chosun Period (조선후기 기호성리학파의 역학계몽 이해)

  • Yi, Suhn Gyohng
    • The Journal of Korean Philosophical History
    • /
    • no.35
    • /
    • pp.275-308
    • /
    • 2012
  • This article aims to investigate the studies of Yi Xue Qi Meng(易學啓蒙) performed by the researchers of Neo-Confucianism in Ki Ho region in later Chosun period. Philologically speaking, these studies were mainly performed by Han Won Jin and his colleagues. While the study of Yi Hwang(李滉)'s Qi Meng Zhuan Yi(啓蒙傳疑) performed by the researchers of Toegye(退溪) School lasts from the end of the sixteenth century to the nineteen's century, the Ki Ho(畿湖) scholars' study of Yi Xue Qi Meng are centered in the eighteenth century and hardly any significant work on this text is found before and after this century. In order to single out the distinctive features of Ki Ho School of Neo-Confucianism, this article examines three subjects the Ki Ho scholars delved into: (i) their theory of Tai Ji(太極), (ii) their theory of He-Tu(河圖) and the formation of eight trigrams, and (iii) the so-called Wu Wei Xiang De Shuo(五位相得說) discussed in one of the sections in Yi Xue Qi Meng titled the Source of He-Tu and Luo Shu[本圖書]. The Ki Ho scholars are remarkable in interpreting Tai Ji in Yi Xue Qi Meng in the context of the theory of Li-Qi and the theory of human nature. There are differences in opinion among the Ki-Ho scholars with regard to the relation between He-Tu and the formation of eight trigrams. Eventually, they withhold Zhu Xi(朱熹) and Hu Fang Ping(胡方平)'s attempt to synthesize He-Tu, the rectangular diagram of Fu Xi(伏羲)'s eight trigrams, and the circular diagram of Fu Xi's eight trigrams into one single principle. Han Won Jin tries to explain the relation between He-tu and the formation of eight trigrams in terms of the relation between He-Tu and the circular diagram, and his attempt is widely supported by his colleagues. This theory runs counter to traditional model of explaining truth. My conjecture is that such academic trend is further developed by the defenders of Practical Learning such as Hong Dae Yong(洪大容), who vigorously reject traditional system of truth and science, and that it partly explains why the study of Yi Xue Qi Meng ceases in the nineteenth century.

A Numerical Analysis on the Shear and Hydraulic behavior of Single Rock Joint with Roughness (거칠기를 고려한 단일 절리의 전단, 수리적 거동에 대한 수치해석)

  • 이희석;이연규
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.117-128
    • /
    • 2000
  • The development of proper joint model, which can describe real phenomena exactly and still can be used easily, is one of the most important element for the analysis of the mechanical and hydraulic behavior of discontinuous rock mass. In this study, an elasto-plastic constitutive model of joint behavior considering asperity degradation was extended with the concept of first and second order asperities. The proposed model was implemented to numerical code with discrete finite joint element. The parametric study with the various asperity angles and degradation coefficients showed that the model can reproduce the shear behavior of typical rough joints well. Results of laboratory monotonic and cyclic shear tests were compared with those of numerical tests to validate the model. The hydraulic model considering the relations between gouge production and aperture was introduced to the mechanical model. In an attempt to examine the performance of the model, comparative numerical test was conducted. Permeability between joint surfaces increased rapidly at the first stage, but became nearly constant with increasing shear displacement due to gouge production and uniform variation of aperture distribution.

  • PDF

A Numerical Analysis on the Shear and Hydraulic behavior of Single Rock Joint with Roughness (거칠기를 고려한 단일 절리의 전단, 수리적 거동에 대한 수치해석)

  • 이희석;이연규
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.366-377
    • /
    • 2000
  • The development of proper joint model, which can describe real phenomena exactly and still can be used easily, is one of the most important element for the analysis of the mechanical and hydraulic behavior of discontinuous rock mass. In this study, an elasto-plastic constitutive model of joint behavior considering asperity degradation was extended with the concept of first and second order asperities. The proposed model was implemented to numerical code with discrete finite joint element. The parametric study with the various asperity angles and degradation coefficients showed that the model can reproduce the shear behavior of typical rough joints well. Results of laboratory monotonic and cyclic shear tests were compared with those of numerical tests to validate the model. The hydraulic model considering the relations between gouge production and aperture was introduced to the mechanical mode1. In an attempt to examine the performance of the model, comparative numerical test was conducted. Permeability between joint surfaces increased rapidly at the first stage, but became nearly constant with increasing shear displacement due to gouge production and uniform variation of aperture distribution.

  • PDF

Fracture Simulation of UHPFRC Girder with the Interface Type Model (경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석)

  • Guo, Yi-Hong;Han, Sang-Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • This paper deals with the fracture simulation of UHPFRC girder with the interface type model. Based on the existing numerical simulation of quasi-brittle fracture in normal strength concrete, constitutive modeling for UHPFRC I-girder has been improved by including a tensile hardening at the failure surface. The finite element formulation is based on a triangular unit, constructed from constant strain triangles, with nodes along its sides and neither at the vertex nor the center of the unit. Fracture is simulated through a hardening/softening fracture constitutive law in tension, a softening fracture constitutive law in shear as well as in compression at the boundary nodes, with the material within the triangular unit remaining linear elastic. LCP is used to formulate the path-dependent hardening-softening behavior in non-holonomic rate form and a mathematical programming algorithm is employed to solve the LCP. The piece-wise linear inelastic yielding-failure/failure surface is modeled with two compressive caps, two Mohr-Coulomb failure surfaces, a tensile yielding surface and a tensile failure surface. The comparison between test results and numerical results indicates this method effectively simulates the deformation and failure of specimen.

Asian Image-mathematics System from the Viewpoint of Three Category (삼원적 구조로 본 상수역학 체계;사상(四象)${\cdot}$오행(五行)${\cdot}$육기(六氣)를 중심으로)

  • Kim, Byoung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.5
    • /
    • pp.1065-1071
    • /
    • 2007
  • It has been known that Asian Medicine theory are based on yin and yang & Five Phases. but recently many therapist using asian medicine in Korea or another nations, take up the position that it is not inevitable for them to adopt the theory of yin-and-yang & Five Phases when they cure a patient. but the point of this view suggests they can not understand totally the real theory about yin-and-yang & Five Phases. asian image-mathematics based on I-Ching could analysis all things with the natural number. the kernel of understanding on principle of I-Ching is realizing that the standard should be changed in some conditions and the form of cosmos should change endless. the system of all thing under sun is divided in three parts on the asian image-mathematics. the nature number from one to nine is divided in three categories that are grouped as 123, 456, 789. So, if we want to understand Five Phases theory, we suggest that it is useful to know the organic connected relations among Four Images, Five Phases, Six Qi(six kinds of weather). the aim of this paper is to arrive at understanding of profound learning on image-mathematics throughout the number of 4, 5, 6 in the concrete context.

Determination of the complex refractive index and thickness of MNA/PMMA thin film (MNA/PMMA 고분자박막의 복소굴절율 및 두께결정)

  • 김상열
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.357-362
    • /
    • 1996
  • The thickness and the spectrum of the complex refractive index in the region 1.5~4.5 eV, of an MNA/PMMA thin film fabricated by spin casting are determined. The film thickness and the refractive index in its transparent region is calculated by modeling the spectroscopic ellipsometry data. The extinction coefficient spectrum is obtained from the absorption spectrum in its non-transparent region. The best fit oscillator parameters of the classical Lorentz oscillator and a quantum mechanical oscillator are found. The complex refractive index spectrum by these oscillators are compared. The present technique can be applied to get the thickness and the complex refractive index of unknown polymer films and thus it will be useful in optical characterization of those films.

  • PDF

The Effect of Pressure and Temperature on the Benzene-Iodine Charge Transfer Complex in n-Hexane (벤젠과 요오드 사이의 전하이동착물에 대한 압력과 온도의 영향)

  • Oh Cheun Kwun;Jeong Rim Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.102-110
    • /
    • 1983
  • The effect of pressure and temperature on the stabilities of the benzene-iodine charge transfer complex have been investigated through ultraviolet spectrophotometric measurements in n-hexane. The stabilities of the complexes were measured at temperatures of 25, 40 and $60^{\circ}C$ up to 1600 bars. The equilibrium constant of the complex formation was increased with pressure and decreased with temperature raising. The absorption coefficient was increased with both pressure and temperature. Changes of volume, enthalpy, free energy and entropy for the formation of complexes were obtained from the equilibrium constants. The red-shift at a higher pressure, the blue-shift at a higher temperature and the relation between pressure and oscillator strength were discussed by means of thermodynamic functions.

  • PDF

Study on Influence of Spring Constant on Frictional Behavior at the Nanoscale through Molecular Dynamics Simulation (나노스케일 마찰거동에서 스프링 상수가 마찰에 미치는 영향에 대한 분자동역학 연구)

  • Kang, Won-Bin;Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.77-80
    • /
    • 2021
  • In this study, we investigated the effect of the spring constant on frictional behavior at a nanoscale through molecular dynamics simulation. A small cube-shaped tip was modeled and placed on a flat substrate. We did not apply the normal force to the tip but applied adhesive force between the tip and the substrate. The tip was horizontally pulled by a virtual spring to generate relative motion against the substrate. The controlled spring constant of the virtual spring ranged from 0.3 to 70 N/m to reveal its effect on frictional behavior. During the sliding simulation, we monitored the frictional force and the position of the tip. As the spring constant decreased from 70 to 0.3 N/m, the frictional force increased from 0.1 to 0.25 nN. A logarithmic relationship between the frictional force and spring constant was established. The stick-slip instability and potential energy slope increased with a decreasing spring constant. Based on the results, an increase in the spring constant reduces the probability of trapping in the local minima on the potential energy surface. Thus, the energy loss of escaping the potential well is minimized as the spring constant increases.

MD Simulation Study for Preferred Structure of Glycerol Backbone in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) Molecule According to Solvent Properties (용매 특성에 따른 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 분자에서 글리세롤 골격 구조에 대한 MD 시뮬레이션 연구)

  • Yang, Ji-yun;Huh, Eugene;Ahn, Ik-sung;Mhin, Byung-jin
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.3
    • /
    • pp.179-184
    • /
    • 2021
  • In this study, the molecular dynamics simulation of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) single molecule was conducted by changing the solvent properties in order to investigate the change in the glycerol backbone structure in phospholipids according to the solvent properties. DOPC has three different conformations according to glycerol C1-C2 bond: A(θ3 = trans, θ4 = gauche), B(θ3 = gauche, θ4 = gauche-), C(θ3 = gauche-, θ4 = trans). Changes in the glycerol backbone structure of the DOPC were examined using the solvent's dielectric constant and surface tension constant as variables. As a result, the population of the B structure increased as the dielectric constant increased. The reason is that the solvation energy of the B structure is larger than that of A. In addition, as the surface tension constant increased, the population of the B structure increased because the surface area of B was smaller than that of A. The results of these studies are expected to be used in the study of phospholipid structure in the future.

Application of Computational Mineralogy to Studies of Hydroxyls in Clay Minerals (전산광물학을 이용한 점토광물 내의 수산기 연구 가능성)

  • Chae, Jin-Ung;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.271-281
    • /
    • 2014
  • The physicochemical properties of clay minerals have been investigated at the atomistic to nano scale. The microscopic studies are often challenging to perform by using experimental approaches alone. In particular, hydroxyl groups of octahedral sheets in 2:1 clay minerals have been hypothesized to impact the sorption process of metal cations; however, X-ray based techniques alone, a common tool for mineral structure examination, cannot properly test the hypothesis. The current study has examined whether computational mineralogy techniques can be applied to examine the hydroxyl structures of clay minerals. Based on quantum-mechanics and molecular-mechanics computational methods, geometry optimizations were carried out for representative dioctahedral and trioctahedral phyllosilicate minerals. Both methods well reproduced the experimental lattice parameters; however, for structural distortion occurring in the tetrahedral or octahedral sheets, molecular mechanics showed significant deviations from experimental data. The orientation angle of the hydroxyl with respect to (001) basal plane is determined by the balance of repulsion between the hydroxyl proton and Si cations of tetrahedral sites; the quantum-mechanics method predicted $25-26^{\circ}$ for the angle, whereas the angle predicted by the molecular-mechanics method was much higher by $10^{\circ}$ (i.e., $35^{\circ}$). These results demonstrate that computational mineralogy techniques are a reliable tool for clay mineral studies and can be used to further elucidate the roles of hydroxyls in metal sorption process.