• Title/Summary/Keyword: 상대구속조건

Search Result 36, Processing Time 0.025 seconds

Proposal of Predictive Equations of Normalized Shear Modulus and Damping Ratio Curves for Loose Medium Sand Reinforced by Vinyl Strip-cement (비닐스트립-시멘트로 보강된 느슨한 중간 모래의 정규화 전단탄성계수 및 감쇠비 곡선 산정식 제안)

  • Kim, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.12
    • /
    • pp.33-45
    • /
    • 2021
  • In this study, predictive equations of the normalized shear modulus and the damping ratio curves for loose medium sands reinforced by vinyl strip-cement are proposed. Based on the results of a series of resonant-column tests (Yu, et al., 2018) conducted under the confining stresses of 15, 30, 60 kPa on sand specimens prepared with 40% relative density and reinforced by various contents of vinyl strip (0.0, 0.1, 0.3, 0.4%) and cement (0, 1, 2%), the equations estimating the normalized shear modulus and the damping ratio are proposed as functions of reinforcing conditions and confining stresses. The comparison between predicted and measured values of shear modulus and damping ratio shows a good agreement and the reliability of proposed predictive equations are validated by high R2-value greater than 0.9. Therefore, it is expected that the time and the cost required for constructing the normalized shear modulus and the damping ratio curves will be much reduced by using proposed equations in this study since those can easily be estimated without conducting resonant-column test.

Occurrence of Sand Liquefaction on Static and Cyclic Loading (정적 및 동적 하중에서 모래의 액상화 발생)

  • 양재혁
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.235-244
    • /
    • 2001
  • Liquefaction may be caused by sudden decrease in the soil strength under undrained conditions. This loss of soil strength is related to the development of excess pore pressures. During this study, fines content affects the maximum and minimum void ratios are investigated. The results of static and cyclic triaxial test on silty saturated sands are presented. These tests are performed to evaluate liquefaction strength and static and cyclic behavior characteristics. The samples are obtained from Saemangeum and drying on air. The main results are summarized as follows : 1) The maximum and minimum void ratio lines follow similar trends. 2) Maximum and minimum void ratios are established at 20~30% fines content. 3) As confining pressures and overconsolidation ratio are increased, the resistance to liquefaction are increased. 4) Instability friction angles are increased with increasing initial relative density. 5) The resistance to liquefaction are decreased with increasing effective stress ratio.

  • PDF

Evaluation of the Influence of the Method of Sample Preparation on the Shearing Behavior of Sands using Elastic Waves (탄성파를 통한 시료성형방법에 따른 모래 전단거동특성 평가)

  • Yoo, Jinkwon;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.57-65
    • /
    • 2014
  • For economic and technical reasons, it is difficult to obtain high quality undisturbed cohesionless samples, hence most researchers rely on preparing remolded and reconstituted representative samples of sandy soils. In this study, moist tamping, air pluviation, and dry deposition methods were applied to make remolded samples at similar relative densities. A series of isotropically consolidated drained tests were conducted with accompanied by measured elastic wave velocities in order to evaluate a difference between sample preparation methods and relative densities. For the elastic wave velocity measurements, piezoelectric elements were installed on the top and bottom cap of the triaxial device. The results showed that soil behavior relies on sample preparation methods, and that the trend of shear wave velocity was the same with volumetric strain behavior.

Effect of Specimen Size on Undrained and Drained Shear Characteristics of Granular Soils (공시체의 직경이 사질토의 비배수 및 배수 전단거동에 미치는 영향)

  • Park, Sung-Sik;Choi, Sun-Gyu;Kim, Dong-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.15-23
    • /
    • 2012
  • An internal friction angle, which is one of strength parameters of granular soils, can be obtained from direct shear tests or triaxial tests. The result of traixial tests can be influenced by various experimental conditions such as confining pressure, shearing rate, specimen diameter and height, and end constraint. In this study, undrained and drained shearing behaviors of Nakdong River sand were investigated for loose (Dr = 40%) and dense (Dr = 80%) specimens with 5, 7, and 10 cm in diameter. Friction angles such as undrained total stress friction angle, undrained effective stress friction angle, and drained friction angle obtained from Mohr's stress circle slightly increased and then decreased as a diameter of a specimen increased from 5, 7 to 10 cm, regardless of relative densities. The difference between friction angles caused by different specimen size was at maximum 4.5 degrees for undrained total stress friction angle of dense specimen. In most cases, there was little difference between friction angles of large and small specimens, which was less than 2 degrees. The difference between an effective friction angle from undrained tests and a drained friction angle from drained tests was at maximum 7 degrees for loose samples but negligible for dense samples.

Lateral Behavior of Group Pile in Sand (사질토 지반에서 군말뚝의 수평거동에 관한 연구)

  • 김영수;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.117-129
    • /
    • 2000
  • This paper discusses the lateral behavior of group pile in homogeneous and non- homogeneous (two layered) soil. In the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, constraint condition of pile tip, eccentric load and ground condition. The group efficiency and lateral deflection induced in active piles were found to be highly dependent on the spacing-to-diameter ratio of pile, number of pile. Lateral bearing capacities in the group piles of fixed tip, in the case of 6D spacing and $3\times3$ array, were 40-100% higher than those in the group pile of free tip. Based on the results obtained, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8% and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. However, in the case of dense sand, it can be estimated that a spacing-to-diameter of 8.0 seems to be large enough to eliminate the group effect. In this study the group efficiency is illustrated in experimental function with spacing-to-diameter, S/D, relative density and number of pile. The distribution of shear force in lead row piles, in the case of 3$\times$3 array group pile, was 41.6-52.4% for 3D spacing and 34-40% for 6D spacing, respectively. The shadowing effect for the parallel direction of lateral loading appears to be more significant than the one for the perpendicular direction of lateral loading.

  • PDF

Model Tests on the Lateral Behavior of Steel Pipe Piles(I) in the Nak -dong River Sand (강관말뚝의 수평거동에 대한 모형실험 연구(I) -대구지역 낙동강 모래에 대하여)

  • 김영수;허노영
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.59-74
    • /
    • 1997
  • This paper shows the results of a series of model bests on the behavior of single steel pipe pile which is subjected to lateral load in Nak-dong river sand. The purpose of the present paper is to estimate the effect of Non -homogeneous soil, constraint condition of pile head, lateral load velocity, relative density of soil, embedded pile length, and flexural stiffness of pile on the behavior of single pile which is embedded in Nak-dong river strand. These effects can be quantined only by the results of model tests. The nonlinear responses of lateral loadieflection relationships are fitted to 2nd polynomial equations by model tests results. Also, the lateral load of a deflection, yield and ultimate lateral load max. bending moment, and yield bending moment can be expressed as exponential function in terms of relative density and deflection ratio. By comparing Brom's results with model results on the lateral ultimate load, it is found that short and long pile show the contrary results with each other. The contrary results are due to the smaller assumed soil reaction than the soil reaction of the Nakiong river sand at deep point. By comparing lateral behavior on the homogeneous soil with non-homogeneous soil, it is shown that lateral loadieflection relationship is very dependent on the upper relative density. This phenomenon is shown remarkably as the difference between upper and lower relative density increases.

  • PDF

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(II) : Verification (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(II) : 모델 검증)

  • 이진선;김동수;추연욱;윤종구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.57-66
    • /
    • 2003
  • In order to verify the applicability of the developed modified parallel IWAN model. two types of cyclic torsional shear tests were performed using Kum-Kang and Toyoura sands. One was a symmetric-limit loading test and the other was an irregular loading test. Model parameters were derived from the symmetric limit loading tests at various relative densities and confining pressures. The modified parallel IWAN model can predict the cyclic hardening behavior of sands very well as increasing loading cycles in the symmetric-limit tests. Irregular loading tests were performed using the loading shape suggested by Pyke(1979). Cyclic behaviors under irregular loading were simulated using model parameters derived from symmetric limit loading test results of similar loading conditions. The predicted cyclic hardening behaviors under irregular loading matched well with experimental results and the applicability of the proposed model was verified.

Parameter Study of Track Deformation Analysis by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 지하철 궤도 변형 해석을 위한 매개변수 연구)

  • Choi, Jung-Youl;Cho, Soo-Il;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.669-675
    • /
    • 2020
  • In this study, 3D analysis was compared in evaluating the track deformation of subway structures during adjacent excavation. For the 3D analysis model, the boundary conditions of the tunnel model and the application level of the ground water were analyzed as variables. As the result of the effects of track irregularity using the 3D model, the analysis model considering the site ground water level instead of the design values and changing the constraint of the boundary condition is more reasonable. In addition, the influence of track irregularity due to the boundary condition and load condition of the analytical model is more obvious in the factors directly affected by the longitudinal relative displacement of the rail, such as alignment, cross level and gauge irregularity. Therefore, the evaluation on track stability according to adjacent excavation work was appropriate to analysed the longitudinal deformation of the track by using 3D model that could be investigate the deformation of rail. In addition, the boundary condition and load condition(ground water level) of the numerical model was important for accurate analysis results.

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test (평면변형시험을 이용한 화강풍화토의 응력-변형률 특성)

  • Kim, You-Seong;Lee, Jin-Kwang;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.37-46
    • /
    • 2014
  • Geotechnical structures have been analyzed and constructed in various geometry conditions to maintain their stability in accordance with the characteristics of construction design. Shear strengths are generally obtained from triaxial test to apply to design analysis. Geotechnical structures under strip loading, such as earth dam, embankment, and retaining wall, have the strain in a direction, and plane strain condition. Thus, an approximate shear strengths should be applied for stability analysis suitable to ground condition. When applying shear strengths obtained from triaxial tests for slope stability analysis, the evaluation of it may underestimate the factor of safety because the implementation is not suitable for geometry condition. The paper compares shear strengths obtained from triaxial test and plane strain test based on various relative densities using weathered granite soils. Additionally, yield stress is determined by maximum axial strain 15% in triaxial test because of continuous kinematic hardening, but plane strain test can determine a failure point in critical state to evaluate the shear strengths of soils at the second plastic hardening step. This study proposes to perform an appropriate test for many geotechnical problems with plane strain condition.