• Title/Summary/Keyword: 상단 자세제어

Search Result 16, Processing Time 0.02 seconds

The Launch Vehicle Autopilot Structure Design and Analysis with Roll Compensation Algorithm (롤 보상알고리듬을 적용한 발사체 자세제어기 구조 설계 및 분석)

  • Park, Yong-Kyu;Oh, Choong-Seok;Sun, Byung-Chan;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.98-106
    • /
    • 2011
  • This paper is summarized for designing launch vehicle autopilot structure with attitude angle command from guidance algorithm and for evaluating performance of autopilot using launch vehicle six-degree of freedom simulation program. The suggested autopilot has heritage from KSR-III/KSLV-I upper stage autopilot designing experience, and it has two design point. The one is, it must have same performance with KSR-III/KSLV-I upper stage autopilot, the other is, it must be simple autopilot structure and use low number of variable to apply on-board system. It is evaluated the performance using launch vehicle six-degree of freedom simulation program in case of roll maneuvering and no roll control flight condition.

Development of the Gas Charging Simulator for Reaction Control System of KSLV-I (KSLV-I RCS 충전모사 시스템 개발)

  • Jeon, Sang-Woon;Jung, Seul;Kim, Ji-Hun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.122-126
    • /
    • 2009
  • KSLV(Korea Space Launch Vehicle)-I is designed as a launch vehicle to enter a 100 kg-class satellite to the LEO(Low-Earth Orbit). Attitude angles of the upper-stage, including roll, pitch and yaw are controlled by cold gas thruster system using nitrogen gas. To verify the flow rate of the gas charging system and to prepare a nitrogen gas charging scenario, the development of a gas charging simulator for RCS(Reaction Control System) is required. This paper describes the orifice design, development, and test of the gas charging simulator for RCS of KSLV-I.

  • PDF

A Study on Command Generation Methods of Reaction Control System for Upper Stage Attitude Control of Launch Vehicles (발사체 상단 자세제어용 추력기시스템 명령생성방식 연구)

  • Sun, Byung-Chan;Park, Yong-Kyu;Oh, Choong-Suk;Choi, Kyung-Jun;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.44-54
    • /
    • 2014
  • This paper suggests two kinds of reaction control system command generation methods for upper stage attitude control of launch vehicles. The reaction control system is assumed to consist of two sets of three nozzles. One operation technology is based on mixed attitude error functions, and the other is based on command mixing functions. Both are compared via simulations. The simulation results show that the latter is comparatively preferable in terms of interference among control axes, independency of controller design and analysis among axes, and prediction of flight performance of each control axis.

Research on Development and Performance Evaluation for Thruster of Reaction Control System for KSLV-I (KSLV-I RCS 추력기 개발 및 수행 평가에 대한 연구)

  • Jeon, Sang-Woon;Jung, Seul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.3
    • /
    • pp.19-27
    • /
    • 2010
  • KSLV(Korea Space Launch Vehicle)-I is designed as a launch vehicle to enter a 100 kg-class satellite to the LEO(Low-Earth Orbit). Attitude angles of the upper-stage, including roll, pitch and yaw are controlled by cold gas thruster system using nitrogen gas. The thruster for the KSLV-I is the main pneumatic valve in the RCS(Reaction Control System). In this paper, the design, function tests, and environment tests of the thruster for KSLV-I are described. The developed thrusters are experimentally evaluated and successfully passed the required qualification and acceptance tests.

Current technology status for the Reaction Control System of Launch Vehicle (해외 상용발사체의 RCS 개발 동향)

  • Kim, In-Tae;Lee, Jae-Won;Seo, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.72-77
    • /
    • 2008
  • The function of the Reaction Control System include roll, pitch and yaw control of the launch vehicles and fine control maneuvers and precision upper stage orientation before separation of one or more payload. This paper describes the overview of commercial launchers, current technology trend for RCS of launch vehicles, and development status of medium class thruster for RCS.

  • PDF

Thruster Fault Detection of the Launch Vehicle Upper Stage Attitude Control System (발사체 상단 자세제어 시스템의 추력기 고장 검출)

  • Lee, Soo-Jin;Kwon, Hyuk-Hoon;Hwang, Tae-Won;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.72-79
    • /
    • 2004
  • A method for thruster fault diagnosis for launch vehicle upper stage was developed. In order to protect the launch vehicle against the occurrence of faults, it is necessary to detect and identify the fault, as well as to reconfigure the controller of the vehicle. Considering the upper stage launch vehicle using reaction control system, an analytical method was adopted in order to detect the fault occurred in thruster. The fault detection scheme can be applied to the system regardless of the form of thruster fault occurred - leakage or lock-out. Results from processor-in-the-loop simulation are provided to demonstrate the validity of this fault detection and isolation scheme for the upper stage launch vehicle.

Development of 100, 250 N Commercial $H_2O_2$ Monopropellant Thruster for Space Launch Vehicles (발사체 자세제어를 위한 100, 250 N 급 상용 과산화수소 단일추진제 추력기 개발)

  • An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Seung;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.19-22
    • /
    • 2009
  • Design and performance evaluation of $H_2O_2$ monopropellant thrusters to be used at attitude control of space launch vehicles were presented in this paper. Flight model thrusters were designed after two reactors for 100, 250 Newton were conformed at engineering model. Each thruster was evaluated by measurement of characteristic velocity, thrust, specific impulse, and pulse response times.

  • PDF

Creating a Patient Care Bed Controlled by the Program (프로그램에 의해 제어되는 환자 돌봄용 침대 모델)

  • Lee, Kyong-ho;Son, Sung-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.503-506
    • /
    • 2021
  • 본 연구에서는 적은 힘으로도 누워있는 환자의 자세를 바꾸어 줄 수 있는 침대 모형을 만들었다. 시중에서 판매되고 있는 변형 환자 침대는 침대의 변형을 수동으로 바꾸거나 침대에 연결되어 있는 구동기로 단순히 환자의 자세를 바꿀 수 있다. 본 연구에서 만들어진 침대는 침대를 다리 하단 / 다리 상단 / 상체 파트로 나누어 따로 또 병렬로 자세를 바꿀 기능을 구현하였을 뿐 아니라, 스마트폰 앱에 의한 제어 구동도 가능하고, 편안한 자세를 이루는 각 파트의 각도를 편리하게 기억시킬 수 있고, 버튼 한번 누름으로 기억된 형태로 구성이 가능하다. 또 누워있는 환자가 관절을 사용하지 않아 굳는 형태를 방지하기 위한 운동 기능이 추가되어 파트별로 운동을 시킬 수 있도록 하였다.

  • PDF

Development of High Thrust $H_2O_2$ Monopropellant Thruster for Reaction Control System of Space Launch Vehicles (발사체 자세제어 적용을 위한 고추력 과산화수소 단일추진제 추력기 개발)

  • An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Seung;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Design and performance evaluation of $H_2O_2$ monopropellant thrusters to be used at reaction control of space launch vehicles were presented in this paper. Design thrust level was determined as 100, 250 Newton which is nominal thrust level for commercial space launch vehicles. Qualification thruster models including solenoid valves were developed after the reactor design were evaluated at engineering thruster models. Each thruster was evaluated by measurement of characteristic velocity, thrust, specific impulse, and pulse response times at sea level test condition.

Thruster system for attitude control of launch vehicles (발사체 자세 제어용 추력기 시스템)

  • Shin, Dong-Sun;Han, Sang-Yeop;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.7-10
    • /
    • 2006
  • In order to inject satellites into a target orbit, launch vehicles should have a precise attitude and control system capable of controlling three axises of pitch, yaw and roll. For launch vehicles, there are two types of attitude control system currently in popular use; the first one is a cold gas method, and the other is a liquid propulsion system using a single and dual property propellant. The purpose of this paper is to analyze the characteristics of thrust control system using said propellant, thereby providing for a rationale for its application to the upper stages of launch vehicles, in terms of the simplicity of the system, economics of structure and operation.

  • PDF