• Title/Summary/Keyword: 삼차원 동적 해석

Search Result 10, Processing Time 0.021 seconds

Estimation of Slab Response of Plate Girder Bridge in Traffic-Induced Vibration by Three-Dimensional Analysis (삼차원 해석에 의한 강합성교 바닥판의 교통유발진동 응답 평가)

  • Kim, Chul Woo;Kawatani, Mitsuo;Lee, Woo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.263-277
    • /
    • 1998
  • Recently, it is frequently reported that fatigue damages of deck slabs and floor systems of highway bridges occur under the conditions of increasing weight and traffic of heavy vehicles. These troubles are affected by dynamic wheel load of heavy vehicles running on roadway surface roughness with bump at expansion joint. It is required that this kind of traffic-induced vibration of highway bridges must be analyzed by using three-dimensional models of bridge and vehicle. In this study, the three-dimensional dynamic analysis is carried out, and dynamic responses of deck slab and wheel loads of moving vehicle are estimated according to different vehicle speeds and bump heights. Analytical responses of bridge deck slab are compared with experimental ones which were measured at Umeda entrance bridge of Hanshin Expressway in Osaka.

  • PDF

Three-dimensional Detoantion Wave Dynamics in a Circular Tube (원형 관 내부에서의 3차원 데토네이션 파의 동적모형)

  • Cho, Deok-Rae;Won, Soo-Hee;Shin, Jae-Ryul;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.68-75
    • /
    • 2008
  • The three-dimensional structure of detonation wave propagating in a circular tube was investigated using a parallel computational code developed previously. A series of parametric study for a circular tube of a fixed diameter gave the formation mechanism of the detonation cell structures depending on pre-exponential factor, k. The unsteady results in three-dimension showed the mechanisms of two, three and four cell mode of detonation wave front structures. The detonation cell number was increased but cell width and length were decreased with increased pre-exponential factor k. In the all multi-cell mode, the detonation wave structure and smoked-foil records on the wall are made by the moving of transverse waves. The detonation wave front structures have the regular polygon and windmill shapes periodically.

Quantitative Lateral Drift Control of RC Tall Frameworks using Dynamic Displacement Sensitivity Analysis (동적 변위민감도 해석을 이용한 고층 RC 골조구조물의 정량적인 횡변위 제어 방안)

  • Lee, Han-Joo;Kim, Ho-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.103-110
    • /
    • 2006
  • This study presents a technique to control quantitatively lateral drift of RC tall frameworks subject to lateral loads. To this end, lateral drift constraints are established by introducing approximation concept that preserves the generality of the mathematical programming and can efficiently solve large scale problems. Also the relationships of sectional properties are established to reduce the number of design variables and resizing technique of member is developed under the 'constant-shape' assumption. Specifically, the methodology of dynamic displacement sensitivity analysis is developed to formulate the approximated lateral displacement constraints. Three types of 10 and 50 story RC framework models are considered to illustrate the features of dynamic stiffness-based optimal design technique proposed in this study.

  • PDF

Numerical Study of Detonation Wave Structure and Dynamics in a Circular Tube (원형관 내 데토네이션 파 구조 및 동적 특성 수치 연구)

  • Cho, Deok-Rae;Kim, Jong-Kwan;Jang, Keun-Jin;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.278-281
    • /
    • 2012
  • Numerical studies were performed to investigate the three-dimensional front structure and dynamics features of detonation wave propagating in a circular tube such as Pulse Detonation Engine (PDE). By carrying out a series of parametric study using one step irreversible Arrhenius kinetics model, mechanisms of the three-dimensional front structure were investigated for two-, three-, four and six-cell mode detonations. A comparison with two-dimensional results, the effects of slapping transverse waves in radial direction were confirmed. In the all muti-cell modes, the detonation front structures and smoked-records on the wall are formed by the propagation of transverse waves along the wall in clockwise and counter-clockwise while the slapping move in radial direction. And the strength of reflected waves on the curved wall is changed by the multi-dimensional confinement effect.

  • PDF

Static and Dynamic Finite Element Analyses of a Bulk-Cement Trailer (벌크 시멘트 트레일러의 정동적 유한요소해석)

  • Kim, Jin-Gon;Lee, Jae-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.8
    • /
    • pp.945-951
    • /
    • 2012
  • In this study, we analyze the static and dynamic characteristics of a bulk-cement trailer with a simpler structure that carries powders. The commercial software ANSYS is used to prepare a detailed three-dimensional model of the chassis frame and tank body that bear most of the load of a bulk-cement trailer for the finite element analysis. Modal analysis is conducted to examine the dynamic characteristics of the trailer body, and static analysis shows weak links in the structure. Finally, we propose a method to increase the strength of vulnerable areas and to reduce the weight of the trailer by applying the Taguchi method.

Lightweight Crane Design by Using Topology and Shape Optimization (위상최적설계와 형상최적설계를 이용한 크레인의 경량설계)

  • Kim, Young-Chul;Hong, Jung-Kie;Jang, Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.7
    • /
    • pp.821-826
    • /
    • 2011
  • CAE-based structural optimization techniques are applied for the design of a lightweight crane. The boom of the crane is designed by shape optimization with the shape of the cross section of the boom as the design variable. The design objective is mass minimization, and the static strength and dynamic stiffness of the system are set as the design constraints. Hyperworks, a commercial analysis and optimization software, is used for shape and topology optimization. In order to consistently change the shape of the elements of the boom with respect to the change in the shape of its cross section, the morphing function in Hyperworks is used. The support of the boom of the original model is simplified to model the design domain for topology optimization, which is discretized by using three-dimensional solid elements. The final result after shape and topology optimization is 19% and 17% reduction in the masses of the boom and support, respectively, without a deterioration in the system stiffness.

FEM Modeling Automation of Machine Tools Structure (공작기계 구조물의 전산 모델링 자동화)

  • Lee, Chan-Hong;Ha, Tae-Ho;Lee, Jae-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1043-1049
    • /
    • 2012
  • The FEM analysis of machine tools is the general analysis process to evaluate machine performance in the industry for a long time. Despite advances in FEM software, because of difficult simplicity of CAD drawing, little experience of joints stiffness modeling and troublesome manual contact area divide for bindings, the industry designers think the FEM analysis is still an area of FEM analysis expert. In this paper, the automation of modeling process with simplicity of drawing, modeling of joints and contact area divide is aimed at easy FEM analysis to enlarge utilization of a virtual machine tools. In order to verify the effects of modeling automation, a slant bed type model with tilting table is analyzed. The results show FEM modeling automation method only needed 45 minutes to complete the whole modeling process, while manual modeling method requires almost one month with 8200 calculations for coordinate transformations and stiffness data input.

Study on Behavior Analysis of Crash Cushion Using Analysis Data of High-Speed Camera (고속카메라 영상분석 데이타를 이용한 충격흡수시설의 충돌거동 분석에 관한 연구)

  • Jang, Dae-Young;Ko, Man-Gi;Lee, Yoon-Ki;Joo, Jae-Woong
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.75-83
    • /
    • 2009
  • Collision behavior of clash cushion occurs for a second of less than 0.4sec usually so that it is too hard to calculate numerically. Therefore, for development of trash cushion, it rely on full-scale vehicle crash test without any design procedure. Occupant safety indices if calculated from acquired data by data measurement system and collision behavior of vehicle and crash cushion is filming using high-speed camera in the crash test. But practical ufo scope of high-speed camera is limited and it is not using to calculated the occupant safety indices or analyzed the energy dissipated mechanism of crash cushion. This work is to estimate to be suitable or not for compare the data from measurement system with the data from high-speed camera. And also it is to grope for practical use scheme to calculation of occupant safety indices or analysis of collision behavior.

  • PDF

Lightweight Design of a Vertical Articulated Robot Using Topology Optimization (위상최적화를 이용한 수직 다관절 로봇의 경량 설계)

  • Hong, Seong Ki;Hong, Jung Ki;Kim, Tae Hyun;Park, Jin Kyun;Kim, Sang Hyun;Jang, Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1683-1688
    • /
    • 2012
  • Topology optimization is applied for the lightweight design of three main parts of a vertical articulated robot: a base frame, a lower and a upper frame. Design domains for optimization are set as large solid regions that completely embrace the original parts, which are discretized by using three-dimensional solid elements. Design variables are parameterized one-to-one to the material properties of each element by using the SIMP method. The objective of optimization is set as the multi-objective form combining the natural frequencies and mean compliances of a structure for which load steps of interest are selected from the multibody dynamics analysis of a robot. The obtained results of topology optimization are post-processed to designs favorable to manufacturability for casting process. The final optimized results are 11.0% (base frame), 12.0% (lower frame) and 10.0% (upper frame) lighter with similar or even higher static and dynamic stiffnesses than the original models.