• Title/Summary/Keyword: 삼변측정

Search Result 30, Processing Time 0.026 seconds

A Study on the Design and Implementation of a Position Tracking System using Acceleration-Gyro Sensor Fusion

  • Jin-Gu, Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.49-54
    • /
    • 2023
  • The Global Positioning System (GPS) was developed for military purposes and developed as it is today by opening civilian signals (GPS L1 frequency C/A signals). The current satellite orbits the earth about twice a day to measure the position, and receives more than 3 satellite signals (initially, 4 to calculate even the time error). The three-dimensional position of the ground receiver is determined using the data from the radio wave departure time to the radio wave Time of Arrival(TOA) of the received satellite signal through trilateration. In the case of navigation using GPS in recent years, a location error of 5 to 10 m usually occurs, and quite a lot of areas, such as apartments, indoors, tunnels, factory areas, and mountainous areas, exist as blind spots or neutralized areas outside the error range of GPS. Therefore, in order to acquire one's own location information in an area where GPS satellite signal reception is impossible, another method should be proposed. In this study, IMU(Inertial Measurement Unit) combined with an acceleration and gyro sensor and a geomagnetic sensor were used to design a system to enable location recognition even in terrain where GPS signal reception is impossible. A method to track the current position by calculating the instantaneous velocity value using a 9-DOF IMU and a geomagnetic sensor was studied, and its feasibility was verified through production and experimentation.

Research of Error Optimization Techniques according to RSSI Differences between Beacons (비콘 간 RSSI 차이에 따른 오차 최적화 기법의 연구)

  • Yoon, Dong-Eon;Ban, Min-A;Park, Jung-Eun;Jeong, Ga-Yeon;Oh, Am-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.243-245
    • /
    • 2021
  • Existing beacons are suitable for providing untact services, but they have the disadvantage of difficulty in accurate indoor positioning because the deviation in signal strength increases depending on the environment. In general, trilateration technique can reduce deviation, but if the distance between beacons is quite irregular, it becomes difficult to apply the algorithm. Therefore, in this paper, we studied how to reduce the signal power measurement error between beacons. First, we transformed the distance measurement formula using RSSI, assuming that the TX values were the same. In addition, we compared measurement errors with existing beacons by searching beacons with beacons scanner applications implemented with Android. As a result, it was confirmed that if a certain distance was further away, the measurement was measured more accurately than the non-changing beacon. Through this, accurate indoor positioning will be possible even in various disability situations. It is also expected that there will be more cases of establishing services that combine beacon with non-face-to-face services.

  • PDF

Localization Algorithm for Moving Objects Based on Maximum Measurement Value in WPAN (WPAN에서 최대 측정거리 값을 이용한 이동객체 위치추정 보정 알고리즘)

  • Choi, Chang Yong;Lee, Dong Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.5
    • /
    • pp.407-412
    • /
    • 2014
  • Concerns and demands for the Location Based Services (LBS) using Global Positioning System (GPS) and Wi-Fi are largely increased in the world in the present. In some experimental results, it was noted that many errors are frequently occurred when the distances between an anchor node and a mobile node acre measured in indoor localization environment of Wireless Personal Area Network (WPAN). In this paper, localization compensation algorithm based on maximum measurement value ($LCA_{MMV}$) for moving objects in WPAN is proposed, and the performance of the algorithm is analyzed by experiments on three scenarios for movement of mobile nodes. From the experiments, it was confirmed that the average localization accuracy of suggested algorithm was more increased than Symmetric Double-Sided Two-Way Ranging (SDS-TWR) and triangulation as average 40.9cm, 77.6cm and 6.3cm, respectively on scenario 1-3.

The Accuracy Analysis of Combined Geodetic Network Considering the Weight Factor. (Weight Factor를 고려한 복합측지망의 정확도 해석)

  • 강준묵;이진덕;이용창
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.6 no.2
    • /
    • pp.19-27
    • /
    • 1988
  • In determining the horizontal positions, economic, speedy, and accurate analytical adjustment methods have studied and developed for a long time. From now on, the adjustment methods using both angles and distances are expected because the development of more precise instruments, E.D.M, and electronic total station provide us with more advantages than the conventional measurement system. The objective of this paper is to study the characteristics of triangulation, trilateration, and combination method due to change of the weight factor of angles, distances, azimuthes, and control point coordinates of combined geodetic network. The results of this study show that combined method is more accurate and effective than other methods in case of combined geodetic network as the other simple networks.

  • PDF

Distribution Method of BLE Fingerprinting for Large Scale Indoor Envirement (광범위 분산처리 기반 BLE 핑거프린팅 실내 측위 기법)

  • Lee, Dohee;Son, Bong-Ki;Lee, Jaeho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.373-378
    • /
    • 2016
  • Recently, IPS(Indoor Positioning System) Technology has been progressing study and research, It has been studied in the fingerprinting and trilateration continuously. however because Fingerprinting and Trilateration Technology use AP(Access Point) for Positioning Calculation, Fingerprinting and Trilateration are not never had a credit positioning accuracy by using unstable RSSI in large scale. in this paper, to improve the problem about precise positioning in wide area, we introduced a concept of Sector including Cell. Sectors are not involved in each other and only fingerprinting calculation is proceed in a sector. we suggest this fingerprinting system considering efficiency and accuracy and compared to conventional fingerprinting, we demonstrated our system efficiency by mathematical techniques.

Two Dimensional Localization of Partial Dischage using Trilateration Method (삼변측정법을 이용한 2차원 부분방전 발생원의 위치 판별)

  • Son, Ui-Kwon;Oh, Choong-Seok;Jung, Seung-Yong;Lee, Bang-Wook;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.137-138
    • /
    • 2008
  • 가스절연변압기(GITr)는 우수한 절연내력과 높은 신뢰성을 장점으로 가지고 있기 때문에 운전 시 유지 보수가 불필요하도록 설계목표를 정하여 제작되고 있지만, 제작과 운전 단계에서 치명적인 결함이 발생할 수 있고, 이러한 결함들은 전력기기 사고의 원인이 될 수 있다. 따라서 사고발생 전 단계에서 대규모 전력 사고의 발생 요인 중 하나인 전력기기 내부의 결함에 대한 상시 진단 및 원인 분석이 반드시 선행되어야 하며, 이와 같은 진단 분석 기법의 하나로 전력 기기의 내부 결함의 위치 판별에 대한 연구의 필요성이 절실히 요구되고 있다. 따라서 본 논문에서는 일반적으로 Cubicle 구조체 위치의 판별에 사용되는 기법 중 하나인 상변측정법(Trilateration)을 적용함으로써, GITr Mockup(170kV 급)의 세 개의 센서를 이용하여 결함에서 발생되는 부분방전 신호를 3차원적으로 분석하기 위한 연구를 위해 3개의 센서가 구성하는 평면상에 인위적 결함을 위치시켜 결함의 위치를 2차원적으로 분석하는 연구를 수행하여 약 5cm 오차 범위 내에서 결함을 판별하였다.

  • PDF

Multivariate conditional tail expectations (다변량 조건부 꼬리 기대값)

  • Hong, C.S.;Kim, T.W.
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1201-1212
    • /
    • 2016
  • Value at Risk (VaR) for market risk management is a favorite method used by financial companies; however, there are some problems that cannot be explained for the amount of loss when a specific investment fails. Conditional Tail Expectation (CTE) is an alternative risk measure defined as the conditional expectation exceeded VaR. Multivariate loss rates are transformed into a univariate distribution in real financial markets in order to obtain CTE for some portfolio as well as to estimate CTE. We propose multivariate CTEs using multivariate quantile vectors. A relationship among multivariate CTEs is also derived by extending univariate CTEs. Multivariate CTEs are obtained from bivariate and trivariate normal distributions; in addition, relationships among multivariate CTEs are also explored. We then discuss the extensibility to high dimension as well as illustrate some examples. Multivariate CTEs (using variance-covariance matrix and multivariate quantile vector) are found to have smaller values than CTEs transformed to univariate. Therefore, it can be concluded that the proposed multivariate CTEs provides smaller estimates that represent less risk than others and that a drastic investment using this CTE is also possible when a diversified investment strategy includes many companies in a portfolio.

Properties of alternative VaR for multivariate normal distributions (다변량 정규분포에서 대안적인 VaR의 특성)

  • Hong, Chong Sun;Lee, Gi Pum
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1453-1463
    • /
    • 2016
  • The most useful financial risk measure may be VaR (Value at Risk) which estimates the maximum loss amount statistically. The VaR tends to be estimated in many industries by using transformed univariate risk including variance-covariance matrix and a specific portfolio. Hong et al. (2016) are defined the Vector at Risk based on the multivariate quantile vector. When a specific portfolio is given, one point among Vector at Risk is founded as the best VaR which is called as an alternative VaR (AVaR). In this work, AVaRs have been investigated for multivariate normal distributions with many kinds of variance-covariance matrix and various portfolio weight vectors, and compared with VaRs. It has been found that the AVaR has smaller values than VaR. Some properties of AVaR are derived and discussed with these characteristics.

Design and Implementation of Indoor Positioning & Shortest Path Navigation System Using GPS and Beacons in Narrow Buildings

  • Sang-Hyeon, Park;Huhnkuk, Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.11-16
    • /
    • 2023
  • As techniques for indoor positioning, fingerprinting, indoor positioning method using trilateration, and utilizing information obtained from equipments by Wi-Fi/Bluetooth, etc are common and representative methods to specify the user's indoor position. However, in these methods, an indoor space should be provided with enough space to install a large number of equipment (AP, Beacon). In this paper, we propose a technique that can express the user's location within a building by simultaneously using the GPS signal and the signal transmitted from the beacon in a building structure where the conventional method cannot be applied, such as a narrow building. A shortest path search system was designed and implemented by applying the Dijkstra Algorithm, one of the most representative and efficient shortest path search algorithms for shortest path search. The proposed technique can be considered as one of the methods for measuring the user's indoor location considering the structural characteristics of a building in the future.

Development of a Real-Time Position Tracking System for a Manufacturing Process Based on a UWB Sensor Using a Kalman Filter (칼만필터를 적용한 UWB 센서기반 제조업 조립공정작업의 실시간 위치추적 시스템 개발)

  • Jeong, Seung-Hyun;Choi, Deuk-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.627-633
    • /
    • 2020
  • Assembly process data can be gathered in real time in a manufacturing execution system (MES) server using proximity sensors, barcodes, RFID, ZigBee, Bluetooth, wireless sensor networks, etc. Although this is suitable for identifying process flow and checking production progress, it is difficult to trace the location of individual workers in real time for missing work or trajectories within the work area. To overcome this, the location and trajectory of the working tool can be analyzed in real time through a position tracking system of an operator's working tool. It can instruct the operator to perform a consistent working process. Productivity and quality improvement can be achieved by an alarming or blocking operator with possible assembly defects during the assembly process in real time. To this end, we developed a real-time tool position-tracking sensor system based on Ultra Wide Band (UWB) trilateration using a Kalman filter to eliminate mechanical vibration and radio communication noise.