• Title/Summary/Keyword: 삼각 날개

Search Result 32, Processing Time 0.026 seconds

Design and Numerical Analysis of Swirl Generator in Internal Duct using Delta Wing with Vortex Flap (와동 플랩 삼각날개를 이용한 관내 와류 발생장치 설계 및 수치해석)

  • Kim, Myung-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.761-770
    • /
    • 2007
  • In this study, a swirl generator using delta wing was developed in order to simulate total pressure distortion and flow angle distortion. The delta wing was used for $65^{\circ}$-degree sweep back angle to satisfy the design performance for vortex core position, total pressure distortion(DC90) and swirl angle. To extend the swirling flow area, a $45^{\circ}$-degree vortex flap have applied to the delta wing. The swirl generator satisfied the design requirement of distortion coefficient in the flow distortion test to be applied to the simulation duct, and the performances of distortion for vortex core position and swirl angle using CFD(computational fluid dynamics) analysis results that was verified by flow distortion test results.

Effects of Strake Incidence-Angle on the Vortex Flow of a Double-Delta Wing (스트레이크 붙임각이 이중 삼각날개의 와류에 미치는 영향)

  • 손명환;정형석;장조원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.7-15
    • /
    • 2006
  • The effects of strake incidence-angle on the vortex characteristics and the wing-surface pressure distribution for a double-delta wing with strake were investigated experimentally. The strake incidence-angle of negative sign(strake is pitched down from the main-wing upper-surface) increased the suction pressure of the wing-upper surface, which was the same effect of increase of angle of attack. This change of the suction pressure was caused by the closer movement of the vortex cores to the wing upper surface rather than the increase of the vortex strength.

Effect of Centerbody on the Vortex Flow of a LEX-Delta Wing Configuration (중앙동체가 LEX-삼각날개 형상의 와류에 미치는 영향)

  • Sohn, Myong-Hwan;Chung, Hyoung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.9-17
    • /
    • 2005
  • An experimental study of the vortical flow over a yawed delta wing with leading edge extension(LEX) was conducted to investigate the effects of the existence of a centerbody configuration on the flow characteristics of the wing and LEX vortices using off-surface visualization and PIV measurements. The qualitative investigation using these two techniques indicated that the effect of the centerbody existence on the vortex formation was minimal at somewhat low range of angles of attack and sideslip angles. However, the quantitative analysis of the surface pressure measurements revealed the effect of centerbody existence to be prominently increased for the cases with higher angles of attack and sideslip angles. It was also found that the centerbody effect was not significant compared to the effect of sideslip for the present LEX-delta wing configuration.

Effects of Strake Planform on the Vortex Flow of a Double-Delta Wing (이중 삼각날개의 와류에 미치는 스트레이크 평면형상의 영향)

  • 손명환;정형석
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.16-23
    • /
    • 2006
  • The effects of strake planform shapes on the vortex formation, interaction, and breakdown characteristics of double-delta wings were investigated through pressure measurements of upper wing surface and off-surface flow visualization. Three different shapes of strakes were attached to a delta wing respectively to form double-delta wing configurations and tested in a medium-sized subsonic wind tunnel. The results of the pressure measurements indicated that the strake planform having a higher sweep angle generated more concentrated vortex systems at upstream locations, which, however, tended to diffuse and break down much faster at the downstream locations. It was also found from the off-surface visualization results that the cause for the vortex concentration was due to the acceleration of coiling and merging processes between the wing and strake vortices.

Papers : Vortex Flow and Aerodynamic Load Characteristics of the Delta Wing / LEX Configuration in Sideslip (논문 : 옆미끄럼이 있는 삼각 날개 / LEX 형상의 와류와 공력 특성)

  • Son,Myeong-Hwan;Lee,Gi-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.3
    • /
    • pp.37-45
    • /
    • 2002
  • The vortex flow and aerodynamic load characteristics of a $65^{\circ}$ sweep delta wing with the leading edge extension in sideslip condition is investigated experimentally. The freestream velocity is 40 m/sec, which corresponds to a Reynolds number per meter of $1.76{\times}10^6$ based on the wing root chord. The angles of attack range from $12^{\circ}$ to $28^{\circ}$, and the sideslip angles treated are $0^{\circ}$ , $-10^{\circ}$, $-20^{\circ}$. The LEX vortex of the leeward side. The LEX and wing vortics coalesce to to become a concentrated strong vortex or to break down at down at downstream position. Due to the interation of the LEX and wing vortices, a high suction pressure is maintained on the windward wing surface, and a low suction pressure is formed on the leeward wing surface

Velocity Field Measurements Over A Lex/Delta Wing By Triple Axis Hot-Film Anemometry (3축 HOT-FILM 풍속계에 의한 연장된 앞전을 갖는 삼각날개 속도장의 측정)

  • Lee,Gi-Yeong;Son,Myeong-Hwan;Jang,Yeong-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.1-8
    • /
    • 2003
  • Velocity data were acquired at a series of stations in the chordwise direction above a delta wing with leading edge extension, using a triple axis hot film anemometry. Surveys normal to planform yield velocity field data at incidence angle of 24$^{\circ}$and 32$^{\circ}$at a centerline chord Reynolds number of $1.76{\times}10^6$. Experimental results of velocity measurements of mean velocity of three components gave a confidence to quantitative investigate the vortical flow field over a LEX-delta wing with this probe. The present experiments indicated the existence of both wing and LEX vortex where the local mean axial velocity is maximum. It also shown the development of secondary vortex of opposite sign of rotating above the wing surface near the leading edge. The insertion of probe across the flow field was found to have little influence on the position of the vortex core.

Papers : Effect of Sideslip on the Vortex Flow over a Delta Wing (논문 : 옆미끄럼각이 삼각 날개 와류에 미치는 영향)

  • Son,Myeong-Hwan;Lee,Gi-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • The effects of sideslip on the vortex over a delta wing was investigated experimentallu at a free strean velocity of 40 m/sec, corresponding to a Reynolds number of 1.76$\times$$10^6$, based on the root chord. The angles of attack ranged from $16{^{\circ}}$ to $28{^{\circ}}$, and the sideslip angles treated were $0{^{\circ}}$, $-10{^{\circ}}$, and $-20{^{\circ}}$. It was observed that the sideslip decreased the strengths of the vortices of both windward and leeward sides of the wing, and promoted the vortex breakdown on the windward side. At sideslip angle of $-10{^{\circ}}$, the vortex strength of leeward side was increased as the angle of attack increased. This asymmetric development and breakdown of vortices in sideslip condition would cause an abrubt change of the rolling moment at a high angle of of attack, which could be considered as a rolling moment instability.

Combined Effects of Sideslip and AOA on the Vortical Flow of Delta Wing (삼각날개 와류장에서의 옆미끄럼과 받음각의 복합효과)

  • Lee, Gi Yeong;Son, Myeong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.17-24
    • /
    • 2003
  • This paper presents results from steady wind tunnel test conducted on a $65^{\circ}$ delta wing at a root chord Reynolds number of $1.76{\times}10^6$. In these experiments, the wing was instrumented with 188 pressure taps, conjunction with powerful multi-channel data logging system, allowed the wing upper surface pressure distribution to be measured. Analysis indicates that the wing upper surface distribution can provide considerable insight into the comvined aerodynamic effects of angle of attack and sideslip on the wing. In a sideslip condition, the strength of the vortex on the windward side is much stronger than that of leeward side. This asymmetric pressure disstribution betwwen each side of wings result in a negative value of rolling moment. However, at a certatin range of angle of attck and sideslip angle(${\alpha}$=$24^{\circ}{\sim}36^{\circ}C$, ${\beta}$=$-5^{\circ}{\sim}-15^{\circ}C$) abrupt change of sign of rolling monent, rolling monent reversal, was observed.

An Investigation of the Vortical Flow Characteristics over a Yawed Delta Wing with LEX at High Incidence (연장된 앞전을 갖는 편요된 삼각날개의 높은 받음각에서의 와류 특성에 관한 연구)

  • Lee, Ki-Young;Sohn, Myong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.7
    • /
    • pp.105-112
    • /
    • 2002
  • An experimental study of the vortical flow characteristics around a yawed delta wing with the leading edge extension at high incidence angle is undertaken by upper surface pressure measurements. A special emphasis has been put on analyzing the basic physics of vortical flows, concerning the effects of incidence and sideslip angle on the aerodynamic characteristics of the wing, especially under high angle of attack. The experimental data has been dearly demonstrated the beneficial effect of the LEX vortex on the wing vortex. It leads to an essential stabilization of the wing vortex against its breakdown until at much higher incidence angle under small sideslip. An interesting flow feature is occurrence of the rolling moment reversal at a certain range of angle of attack and sideslip angle.

Visualization Study of High-Incidence Vortical Flow over the LEX/Delta Wing Configuration with Sideslip (옆미끄럼을 갖는 LEX/삼각 날개 형상에 대한 높은 받음각 와유동의 가시화 연구)

  • Sohn, Myong-Hwan;Lee, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.109-117
    • /
    • 2002
  • An off-surface flow visualization experiments have been performed to investigate the flow field over a delta wing with the leading edge extension(LEX). The model is a flat wing with $65^{\circ}$ sweepback angle. The free stream velocity is 6.2 m/s, which corresponds to Reynolds number of $4.4\times10^5$ based on the wing root chord. The angle of attack and sideslip angle range from $16^{\circ}\sim28^{\circ}$ and $0^{\circ}\sim-15^{\circ}$, respectively. The visualization technique of using the micro water-droplet and the laser beam sheet enabled to observe the vortical flow structures, which can not be obtained by 5-hole probe measurements. With sideslip angle, the interaction and breakdown of the LEX and wing vortices was promoted in the windward side, whereas, it was suppressed in the leeward side.