• Title/Summary/Keyword: 산화환원효소

Search Result 139, Processing Time 0.019 seconds

Reinforcement of Antioxidative Potentials by Korean Traditional Prescriptions on Mouse Plasma and Liver (전통 한약 탕제 투여에 의한 혈장 및 간 조직의 항산화력 증강 효과)

  • Hong, Seong-Gil;Lee, Mi-Young;Yoon, Yoo-Sik;Kang, Bong-Joo;Kim, Dae-Won;Cho, Dong-Wuk
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1661-1666
    • /
    • 1999
  • Yungmijihwgang-Won, Yollyunggobon-Dan and Palmi-Hwan, Korea traditional prescriptions composed of oriental medical herbs, have been used successfully to improve human health and regimen. This study was designed to examine the mechanism of healthful effects of the Korea traditional prescriptions through its antioxidative potentials. Using in vitro antioxidative activity assay system such as DPPH radical quenching assay, superoxide anion radical scavenging assay and inhibition of TBARS production, three Korea traditional prescriptions were observed to have nearly the same antioxidative potentials as ascorbic acid, a well-known strong water-soluble antioxidant. Moreover, we observed reinforced antioxidative effects of these drugs in liver from mouse fed these drugs with 4 weeks. When liver homogenate was incubated with 2.2'-azobis(amidinopropane) dihydrochloride(AAPH), as a free radical initiator, we observed that oxidative damages were decreased and antioxidative potentials were increased in liver homogenate treated these drugs. However, enzymatic antioxidative system as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase was not affected by drug administration.

  • PDF

The Relationships between the Microorganisms and the Red-Colored Phenomena of Ginseng (Panax ginseng C.A. Meyer) (인삼뿌리의 적변현상과 근권미생물)

  • 윤길영;양덕조
    • Journal of Ginseng Research
    • /
    • v.25 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • To clarify a significant difference between red-colored phenomena (RCP) and microbes isolated from rhizosphere soil of healthy ginseng (HES) and red-colored ginseng (RCS), we have examined growth and cellulase activities of the microbes according to pH variation and iron status. The soil microbes could not grow at pH 3.0 on the YEB medium. The growth of bacterium isolated from RCG at pH from 5.0 to 9.0 showed small differences and the growth of bacterium HES was lower than that of others. The growth of bacteria from RCS and surface soil (SUS) at pH 5.0 were also lower than that of pH 7.0 and pH 9.0. However, the bacteria isolated from red-colored ginseng (RCG) and RCS are able to grow on the medium contained 2 mM Fe$\^$3+/ at pH 3.0. Furthermore, the growth of bacterium from RCG increased about two times in the medium contained iron at pH 7.0 compared with minus iron. The cellulase activity of isolated bacteria increased two times in the medium contained 2 mM Fe$\^$3+/ compared with minus iron. The activity of extra-cellular cellulase was higher by one hundred times than that of intracellular level. The cellulase activity of the bacterium from RCS at pH 5.0 was higher by two times than that of pH 7.0. Especially, intracellular activity of the bacterium from RCS on the medium contained 2mM Fe$\^$3+/ increased about six to seven times compared with control (minus iron). Also, extra-cellular activity increased about eleven to twelve times compared with control. These results indicate that the soil microbes seem to be related iron redoxidation by proton extrusion and with cell wall digestion by secreted cellulase.

  • PDF

Screening test for Dendropanax morbifera Leveille extracts: in vitro comparison to ox-LDL-induced lipid accumulation, ethanol-induced fatty liver and HMG-CoA reductase inhibition (황칠나무 추출물의 고지혈증 완화 효과 스크리닝)

  • Youn, Ji Sun;Kim, Min Seo;Na, Hye Jin;Jung, Hae Rim;Song, Chang Khil;Kang, So Young;Kim, Ji Yeon
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • The objective of this study was to compare the antihyperlipidemic effects of different Dendropanax morbifera leaf extracts in vitro. The extracts differed in terms of specimen age, harvesting season, and extraction method. RAW 264.7 cells were pretreated with these extracts and stimulated by oxidized low-density lipoprotein. Ethanol was used to induce toxicity in HepG2 cells. Cellular lipid accumulation was quantified using oil red O staining in both these cells. The extracts were evaluated for their inhibitory effects on 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. RAW 264.7 cells treated with the 60% ethanol extract of an 8-year-old specimen harvested in November exhibited the lowest lipid accumulation. The 30% ethanol extract of a 5-year-old specimen harvested in May exhibited the greatest protection from ethanol-induced cytotoxicity in HepG2 cells. The hot water extract of an 8-year-old specimen harvested in May showed the greatest inhibition of HMG-CoA reductase. These results showed that D. morbifera extracts prepared from leaves that are harvested in May possess the highest antihyperlipidemic effects.

Biological activity of crude polyphenol fractions of Cedrela sinensis isolated using different extraction methods (참죽의 추출방법에 따른 폴리페놀 분획의 생리기능성)

  • Oh, Min Hui;Yoon, Kyung Young
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.438-443
    • /
    • 2017
  • The biological activity of crude polyphenol fractions (WphF, EphE, VphF, and SphF) extracted from Cedrela sinensis using hot water, ethanol, and enzymes such as Viscozyme and Shearzyme was examined in this study. The yield of VphF was the highest (43.44%) among all fractions. The total polyphenol and flavonoid content of the fractions were highest after ethanol extraction (447.98 and 337.49 mg/g, respectively). Fractions obtained after hot water and ethanol treatment showed high antioxidant activity. All fractions, except for WphF, showed a significantly higher ${\alpha}$-glucosidase inhibitory activity than the acarbose. EphF and WphF showed the high acetylcholinesterase inhibition activity. All fractions showed more than 50% tyrosinase inhibition activity at 2 mg/mL concentration. According to these results, the crude polyphenol fractions from C. sinensis showed high antioxidative, ${\alpha}$-glucosidase inhibitory, and tyrosinase inhibitory activities. This study suggests that crude polyphenol fractions from C. sinensis, especially the WphF and EphF fractions, are good sources of functional food.

Characterization of the Interaction of Sulfiredoxin (Srx1) with a Vacoular Protein $\alpha$-Mannosidase (Ams1) in Saccharomyces cerevisiae (설피리독신과 알파-만노시다제 간의 단백질 결합 특성에 관한 고찰)

  • Barando, Karen P.;Kim, Il-Han
    • The Journal of Natural Sciences
    • /
    • v.17 no.1
    • /
    • pp.13-29
    • /
    • 2006
  • Most redox-active proteins have thiol-bearing cysteine residues that are sensitive to oxidation. Cysteine thiols oxidized to sulfenic acid are generally unstable, either forming a disulfide with a nearby thiol or being further oxidized to a stable sulfinic acid, which have been viewed as an irreversible protein modification. However, recent studies showed that cysteine residues of certain thiol peroxidases (Prxs) undergo reversible oxidation to sulfinic acid and the reduction reaction is catalyzed by sulfiredoxin (Srx1). Specific Cys residues of various other proteins are also oxidized to sulfinic acid ($Cys-So_2H$). Srxl is considered one of the oxidant proteins with a role in signaling through catalytic reduction of oxidative modification like in the reduction of glutathionylation, a post-translational, oxidative modification that occurs on numerous proteins. In this study, the role of sulfiredoxin in cellular processes, was investigated by studying its interaction with other proteins. Through the yeast two-hybrid system (Y2HS) technique, we have found that Ams1 is a potential and novel interacting protein partner of Srxl. $\alpha$-mannosidase (Ams1) is a resident vacuolar hydrolase which aids in recycling macromolecular components of the cell through hydrolysis of terminal, non-reducing $\alpha$-D-mannose residues. It forms an oligomer in the cytoplasm and under nutrient rich condition and is delivered to the vacuole by the Cytoplasm to Vacuole (Cvt) pathway. Aside from the role of Srxl as a catalyst in the reduction of cysteine sulfenic acid groups, it may play a completely new function in the cellular process as indicated by its interaction with Ams1 of the yeast Saccharomyces cerevisiae.

  • PDF

Changes in Physicochemical Properties of Low-Salt Doenjang during Fermentation (저식염 된장의 숙성 중 이화학적 특성 변화)

  • Lee, Seul;Kim, Dong-Han
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.592-599
    • /
    • 2012
  • The effect of additives on the quality of low-salt doenjang was investigated. The amylase activity of the mustard added group decreased during the fermentation period, and the number of yeast and bacteria was also decreased during the fermentation period. The oxidation-reduction potential was low at the later fermentation stages for the mustard and mustard-garlic added groups, and water activity decreased considerably for the alcohol added group. The L-value of alcohol added doenjang decreased with increases in the a-value. The pH was 4.84 in the mustard added group. The reducing sugar content was 10.15% in the alcohol-garlic added group, and the alcohol production was limited by adding mustard. The amino-type and ammonia-type nitrogen were high in garlic and mustard added groups. Alcohol and alcoholgarlic added groups exhibited significantly improved taste and overall acceptability of doenjang.

Proteomic analysis of dehydroascorbate reductase transgenic potato plants (Dehydroascorbate reductase 과발현 형질전환 감자 식물체의 단백질체 분석)

  • Han, Eun-Heui;Goo, Young-Min;Kim, Yun-Hee;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.223-230
    • /
    • 2016
  • Ascorbic acid (AsA) is a strong antioxidant/reducing agent that can be converted to dehydroascorbate (DHA) by oxidation in plants. DHA, a very short-lived chemical, is recycled to AsA by dehydroascorbate reductase (DHAR). Previously, DHAR cDNA was isolated from the hairy roots of the sesame plant, and DHAR-overexpressing transgenic potato plants were generated under the control of the CaMV35S promoter (CaMV35S::DHAR). An increase in transgene expression and ascorbate levels were observed in the transgenic plants. In the present study, proteomic analysis revealed that transgenic plants not only accumulated DHAR in their cells, but also induced several other antioxidant enzyme-related proteins during plant growth. These results suggest that DHAR is important for stress tolerance via induction of antioxidant proteins, and could improve stress tolerance in transgenic potato plants.

Microbial styrene monooxygenase-catalyzed asymmetric synthesis of enantiopure styrene oxide derivatives (미생물 유래 Styrene monooxygenase를 이용한 광학활성 styrene oxide 유도체의 비대칭합성)

  • Lee, Eun-Yeol;Park, Sung-Hoon
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.239-245
    • /
    • 2009
  • Enantiopure styrene oxide derivatives are versatile building blocks for the synthesis of enantiopure pharmaceuticals. Styrene monooxygenase (SMO) catalyzes an asymmetric addition of an oxygen atom into a double bond of vinylaromatic compounds. SMO is a commercially potential biocatalyst to synthesize a variety of enantiopure epoxides with high enantiopurity and recovery yield. In this paper development of SMO biocatalyst and commercial feasibility of SMO-catalyzed asymmetric synthesis of enantiopure stylers oxide derivatives are reviewed.

Regulatory Effects of GMP on the Action of Ginsenoside $Rb_2$ to the Activities of Guanylate Cyclase (긴세노시드 $Rb_2$가 Guanylate Cyclase에 미치는 작용에 대한 GMP의 조절효과)

  • 서기림;남정이
    • Journal of Ginseng Research
    • /
    • v.10 no.1
    • /
    • pp.55-65
    • /
    • 1986
  • Effects of various nucleotides including GMP, glnsenoslde $Rb_2$, and redoxidants on the activities of both particulate and soluble guanylate cyclase from rat brain have been studied. At the low concentra狀onto of GMP, AMP, ADP, and ATP the activity of guanylate cyclase is not substantially affected, whereas the inhibitory effects of these nucleotides on the enzyme activities are increased with the increasing concentrations of the nucleotides. Similarly, the activity of the soluble guanylate cyclase is inhibited with the increasing concentrations of the nucleotides. Inhibitory effects of GMP, AMP, ADP, and ATP on the activities of particulate guanylate cyclase and soluble guanylate cyclase is reduced in the presence of ginsenoside $Rb_2$. It is apparent broom this finding that there are seperate binding sites on the guanylate cyclase molecule specific for nucleootides and for ginsenoside $Rb_2$. $NAD^+$ shows no significant effect on the activities of particulate guanylate cyclase, whereas NADH inhibits the activities of the enzyme. The activity of particulate guanylate cyclase is slightly inhibited by iodine, whereas that of soluble gllanylate cyclase is strongly inhibited.

  • PDF

Consumption of Jeju Ground Water Containing Vanadium Components Enhances Hepatic Antioxidant Defense Systems in ob/ob Mice (비만 마우스 간의 항산화시스템에 대한 바나듐 함유 제주지하수의 증강효과)

  • Kim, A-Reum-Da-Seul;You, Ho-Jin;Hyun, Jin-Won
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • The present study examined the effects of consumption of Jeju ground water containing vanadium components on oxidative stress in obese (ob/ob) mice. Intake of Jeju ground water decreased the generation of oxidative stress induced-lipid peroxidation in the liver of ob/ob mice It also enhanced the enzymatic antioxidant defense system by increasing the protein expression and activity of superoxide dismutase, catalase, and glutathione peroxidase in liver tissues. Jeju ground water intake also upregulated the intracellular content of reduced glutathione. The induction of antioxidant enzyme expression by consumption of Jeju ground water was mediated by the erythroid transcription factor NF-E2 (Nrf2). Increased nuclear expression of phospho Nrf2 was observed in ob/ob mouse liver cells following ntake of Jeju ground water. These results suggest that consumption of Jeju ground water stimulated the antioxidant defense system in the livers of ob/ob mice via induction of Nrf2.