• Title/Summary/Keyword: 산화저항성

Search Result 505, Processing Time 0.031 seconds

Induction of Disease Resistance by Acibenzolar-S-methyl, the Plant Activator against Gray Mold (Botrytis cinerea) in Tomato Seedlings (저항성 유도물질(acibenzolar-S-methyl)처리에 의한 토마토 잿빛곰팡이병 발병억제)

  • Lee Jung-Sup;Kang Nam-Jun;Seo Sang-Tae;Han Kyoung-Suk;Park Jong-Han;Jang Han-Ik
    • Research in Plant Disease
    • /
    • v.12 no.1
    • /
    • pp.40-45
    • /
    • 2006
  • The plant defence activator, Acibenzolar-S-methyl [benzo (1,2,3) thiadiazole-7-carbothioic acid-S-methyl ester, ASM] was assayed on tomato seedlings for its ability to induce resistance against Botrytis cinerea, the causal agent of gray mold in tomato. Pre-treatment of plants with ASM reduced the severity of the disease as well as the growth of the mycelium in plants. In ASM treated plants, reduction in disease severity (up to 55%) was correlated with suppression of mycelia growth (up to 46.5%) during the time course of infection. In plants treated with ASM, activities of peroxidase were determined as markers of resistance. Applications of ASM induced Progressive and significant increase of the enzyme in locally treated tissues. Such responses were expressed earlier and with a much higher magnitude when ASM-treated seedlings were challenged with the pathogen, thus providing support to the concept that a signal produced by the pathogen is essential for triggering enhanced synthesis and accumulation of the enzymes. No such activities were observed in water-treated control plants. Therefore, the slower symptom development and reduction in mycelium growth in ASM treated plants might be due to the increase in activity of oxidative and antioxidative protection systems in plants.

Investigation of Sectional Force on Increasing of Dead Load with Bridge Deck Overlay using Electric Arc Furnace Slag Sand (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 교면포장(橋面鋪裝) 시 단위질량(單位質量) 증대(增大)에 따른 슬래브 단면력(斷面力) 검토(檢討))

  • Jung, Won-Kyong;Chon, Beom Jun;Gil, Yong-Soo
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.62-70
    • /
    • 2013
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace slag to concrete aggregates. In this study, Electric arc furnace slag is used in the PMC(Polymer Modified Concrete) which is applied a bridge pavement of rehabilitation, largely. In that case, this study evaluates the structural safety about increasing the specific weight. The 4-type bridges(RC slab bridge, RC rigid-frame bridge, PSC Beam bridge, Steel box girder bridge) pavement's increasing the total dead load is in 1 ~ 2%. Design moments in a load combination are increased less then 2%. safety factor is decreased less than 3%. Therefore, the structural safety has no problem for applying the electric arc furnace slag within PMC in bridge.

$Ta_{2}O_{5}/SiO_{2}$ Based Antifuse Device having Programming Voltage below 10 V (10 V이하의 프로그래밍 전압을 갖는 $Ta_{2}O_{5}/SiO_{2}$로 구성된 안티휴즈 소자)

  • Lee, Jae-Sung;Oh, Seh-Chul;Ryu, Chang-Myung;Lee, Yong-Soo;Lee, Yong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.80-88
    • /
    • 1995
  • This paper presents the fabrication of a metal-insulator-metal(MIM) antifuse structure consisting of insulators sandwiched between top electrode, Al, and bottom electrode, TiW and additionally studies on antifuse properties depending on the condition of insulator. The intermetallic insulators, prepared by means of sputter, comprised of silicon oxide and tantalum oxide. In such an antifuse structure, silicon oxide layer is utilized to decrease the leakage current and tantalum oxide layer, of which the dielectric strength is lower than that of silicon oxide, is also utilized to lower the breakdown voltage near 10V. Finally sufficient low leakage current, below 1nA, and low programming voltage, about 9V, could be obtained in antifuse device comprising $Al/Ta_{2}O_{5}(10nm)/SiO_{2}(10nm)/TiW$ structure and OFF resistance of 3$3.65M{\Omega}$ and ON resistance of $7.26{\Omega}$ could be also obtained. This $Ta_{2}O_{5}/SiO_{2}$ based antifuse structures will be promising for highly reliable programmable device.

  • PDF

Characteristics of LSC coated Metallic Interconnect for Solid Oxide Fuel Cell (LSC가 코팅된 고체산화물 연료전지용 금속연결재의 특성 연구)

  • Pyo, Seong-Soo;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.172-177
    • /
    • 2010
  • This study reports the high-temperature oxidation kinetics, ASR(area specific resistance), and interfacial microstructure of metallic interconnects coated with conductive oxides in oxidation atmosphere at $800^{\circ}C$, The conductive material LSC($La_{0.8}Sr_{0.2}CoO_3$, prepared by Solid State Reaction) was coated on the Crofer22APU. The contact behavior of coating layer/metal substrate was increased by sandblast. The electrical conductivity of the LSC coated Crpfer22APU was measured by a DC two probe four wire method for 4000hr, in air at $800^{\circ}C$. Microstructure and composition of the coated layer interface were investigated by SEM/EDS. These results show that a coated LSC layer prevents the formation and growth of oxide scale such as $Cr_2O_3$ and enhances the long-term stability and electrical performance of metallic interconnects for SOFCs.

SREBP-1c Ablation Protects Against ER Stress-induced Hepatic Steatosis by Preventing Impaired Fatty Acid Oxidation (지방산 산화 장애 제어를 통한 SREBP-1c 결핍의 소포체 스트레스 유발 비알콜성지방간 보호작용)

  • Lee, Young-Seung;Osborne, Timothy F.;Seo, Young-Kyo;Jeon, Tae-Il
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.796-805
    • /
    • 2021
  • Hepatic endoplasmic reticulum (ER) stress contributes to the development of steatosis and insulin resistance. The components of unfolded protein response (UPR) regulate lipid metabolism. Recent studies have reported an association between ER stress and aberrant cellular lipid control; moreover, research has confirmed the involvement of sterol regulatory element-binding proteins (SREBPs)-the central regulators of lipid metabolism-in the process. However, the exact role of SREBPs in controlling lipid metabolism during ER stress and its contribution to fatty liver disease remain unknown. Here, we show that SREBP-1c deficiency protects against ER stress-induced hepatic steatosis in mice by regulating UPR, inflammation, and fatty acid oxidation. SREBP-1c directly regulated inositol-requiring kinase 1α (IRE1α) expression and mediated ER stress-induced tumor necrosis factor-α activation, leading to a reduction in expression of peroxisome proliferator-activated receptor γ coactivator 1-α and subsequent impairment of fatty acid oxidation. However, the genetic ablation of SREBP-1c prevented these events, alleviating hepatic inflammation and steatosis. Although the mechanism by which SREBP-1c deficiency prevents ER stress-induced inflammatory signaling remains to be elucidated, alteration of the IRE1α signal in SREBP-1c-depleted Kupffer cells might be involved in the signaling. Overall, the results suggest that SREBP-1c plays a crucial role in the regulation of UPR and inflammation in ER stress-induced hepatic steatosis.

Chracteristic of graphene coated stainless steel for PEM fuel cell separator (고분자전해질 연료전지 분리판을 위한 그라핀이 코팅된 스테인리스강의 특성)

  • Nam, Daeguen;Kim, Jungsoo;Choi, Changyong;Park, Youngdo;Oh, Weontae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.90.1-90.1
    • /
    • 2011
  • 연료전지 분리판은 연료, 공기, 수분이 흐를 수 있는 채널들이 포함되어 있으며, 전지들에 의해서 생산되는 전류를 흐르게 할 수 있는 전기전도성을 가져야 할 필요가 있다. 일반적인 금속판들은 연료전지 스택 내의 산성 분위기에 존재해야 하기 때문에 표면 부식이 쉽게 발생한다. 그라핀(graphene)은 우수한 전기전도성을 가지고 있을뿐만 아니라 물리화학적 내식성 및 내구성을 가지고 있어 연료전지 분리판으로서 응용이 가능할 것으로 판단된다. 본 연구에서는 일반적으로 널리 사용하고 있는 스테인리스강(stainless steel)을 모재로 사용하였으며, 그라핀을 전기분무법(electro spray coating)으로 코팅하여 스테인리스강의 내식성 및 전기전도성을 동시에 향상시키고자 하였다. 그라핀은 에탄올을 용매로 사용하여 분산하였으며, 분산제로 소량의 다이페닐다이에톡시실란(diphenyldiethoxysilane)을 첨가하여 코팅용액을 제작하였다. 코팅공정은 15kV 전압을 가하여 1시간동안 코팅을 진해하였으며, 그라핀-스테인리스강 모재의 미세구조를 전자현미경과 광학현미경을 통하여 관찰하였다. 또한 X-선 회절분석법을 이용하여 그라핀의 결정구조를 분석하였다. 한편 스택의 내부와 유사한 산화성 분위를 모사하기 위해 $80^{\circ}C$의 0.1N $H_2SO_4+2ppm\;F^-$ 용액에서 내식성 실험을 수행하였고, 면간접촉저항도 측정하였다. 그라핀이 코팅된 스테인리스강 시편은 고분자전해질 연료전지 분리판의 요구조건을 만족하였으며, 연료전지 분리판으로서의 적용가능성을 확인하였다.

  • PDF

Effect of additives on the stability of Ru CMP slurry (첨가제가 Ru CMP slurry의 안정화에 미치는 영향)

  • Cho, Byung-Gwun;Kim, In-Kwon;Kang, Bong-Kyun;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.50-50
    • /
    • 2007
  • 최근 DRAM 소자 내에서 Ruthenium (Ru) 은 높은 화학적 안정성, 누설전류에 대한 높은 저항성, 고유전체와의 높은 안정성등과 같은 특성으로 인해 금속층-유전막(insulator)-금속층 캐패시터에 대한 하부전극으로 각광받고 있다. 일반적으로 Ru은 화학적으로 매우 안정하여 습식 식각으로 제거하기 어려우며, 이로인해 건식 식각을 이용하여 Ru을 제거하는 것이 널리 통용되고 있다. 하지만 칵 캐패시터의 분리를 위해 Ru을 건식 식각할 경우, 유독한 $Ru0_4$ 가스가 발생할 수 있으며 Ru 하부전극의 탈균일한 표면과 몰드 산화막의 손실을 유발할 수 있다. 이로인해 각 캐패시터간의 분리와 평탄화를 위해 CMP 공정이 도입되게 되었다. 이러한 CMP 공정에 공급되는 슬러리에는 부식액, pH 적정제, 연마입자등이 첨가되는데 이때 연마입자가 응집하여 슬러리의 분산 안정성 저하에 영향을 줄 수 있다. 그리하여 본 연구에서는 Ru CMP Slurry에서의 surfactant와 같은 첨가제에 따른 zeta potential, particle size, sedimentation의 분석을 통해 slurry 안정성에 대란 영향을 살펴보았다. 또한 선택된 surfactant가 첨가된 Ru CMP Slurry를 제조하여 Ru의 removal rate와 TEOS에 대한 selectivity를 측정해 보았다.

  • PDF

Selection of Transgenic Potato Plants Expressing NDP Kinase 2 Gene with Enhanced Tolerance to Oxidative Stress (NDP Kinase 2 유전자를 도입한 산화스트레스 내성 형질전환 감자의 선발)

  • Li, Tang;Kwon, Suk-Yoon;Yun, Dae-Jin;Kwak, Sang-Soo;Lee, Haeug-Soon
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.191-195
    • /
    • 2004
  • Arabidopsis NDPK2 (AtNDPK2) is a key singaling component that regulate cellular redox state and known to enhance multiple stress tolerance when over-expressed in Arabidopsis plant (Moon et al. 2003). In order to develop transgenic potato plants with enhanced tolerance to multiple stresses, we placed an AtNDPK2 cDNA under the control of a stress-inducible SWPA2 promoter or enhanced CaMV 35S promoter. Transgenic potato plants (cv. Superior and Atlantic) were generated using an Agrobacterium-mediated transformation system and selected on MS medium containing 100 mg/L kanamycin. Genomic Southern blot analysis confirmed the incorporation of AtNDPK2 cDNA into the potato genome. When potato leaf discs were treated with methyl viologen (MV) at 10 $\mu$M, transgenic plants showed higher tolerance to MV than non-transgenic or vector-transformed plants. The NDPK2 transgenic potato plants will be further used for analysis of stress-tolerance to multiple environmental stresses.

The Effect of Mechanical Grinding or Electrochemical Properties of $CaNi_5$ Hydrogen Storage Alloy ($CaNi_5$ 수소저장합금의 전기화학 특성에 미치는 MG 처리 효과)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • The effect of the MG on the electrochemical charge-discharge properties of $CaNi_5$ hydrogen storage alloys was investigated under Ar and $H_2$ atmosphere. $CaNi_5$ alloy was partially decomposed to CaO and Ni phase during the MG process. The decomposition of $CaNi_5$ alloy was enhanced by the MG process which leads to crash and reformation of oxide layer on the alloy surface. As the MG process time increased, initial discharge capacity of the electrode was reduced, but the decay rate of the capacity compared to $CaNi_5$ alloys was slower. It may be described that the degradation of $MG-CaNi_5$ electrode was caused by the reduction of the reversible hydrogen reaction sites and increasing polarization resistance of hydrogen adsorption resulted from phase decomposition and disorder during the MG process, and/or by hydroxide formation during the electrochemical charge-discharge cycles.

Preliminary Sizing of a High Temperature Superconducting Motor for the Application to Electrically Propelled Aircraft (전기 추진 항공기에 적용하기 위한 고온초전도 모터의 초기 사이징)

  • Shin, Kyo-Sic;Hwang, Ho-Yon;Ahn, Jon;Nam, Tae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.789-799
    • /
    • 2012
  • In this research, a high temperature superconducting(HTS) motor is designed which is adequate for an electrical aircraft by generating high power density and the potentiality of its application to an aircraft is studied. The designed motor is based on YBCO plates, HTS coils composed of Bi-2223, and ironless air cooled resistive armature. The HTS motor is designed to generate power equivalent to O-360 engine with 180HP at 2700RPM which is used for Cessna and equivalent to CFM56 engine with 18000HP at 5000RPM which is used for B-737. Also, power densities of HTS motors are compared with power densities of aircraft engines so that we can estimate the potentiality of the HTS motor as an aircraft engine.