• 제목/요약/키워드: 산화분해 속도상수

검색결과 38건 처리시간 0.028초

가수분해에 의한 2, 4, 6-Trinitrotoluene(TNT) 처리 (2, 4, 6-Trinitrotoluene(TNT) Treatment by the Alkaline Hydrolysis)

  • 권범근;김종오
    • 한국지반환경공학회 논문집
    • /
    • 제13권9호
    • /
    • pp.69-74
    • /
    • 2012
  • 본 연구에서는 염기성 수산화이온을 이용한 TNT의 분해 특성을 조사하였다. 이를 위해 TNT 처리 시 분광학적인 변화 특성을 관찰하고, pH 영향 및 반응생성물에 대해 정량적으로 조사하였다. 실험결과, pH=12에서 가수분해에 의해 TNT 수용액이 갈색을 띄는 파장 400-600nm 범위 내에서 흡광도가 증가함을 관찰하였다. 수용액 상의 pH=12에서 TNT 가수분해 시 pseudofirst-order 속도상수는 $0.0022min^{-1}$으로 나타났으며, 그 반응속도는 매우 느린 것으로 초기 TNT 농도인 $44{\mu}M$이 약 90% 정도 분해되려면 약 1,047min(17.44hrs)이 소요될 것으로 예상되었다. 반응 생성물로는 아질산이온과 포름산이 주로 생성되며, 기타 미량 성분으로 질산이온, 옥살산 등이 확인되었다.

과황산(persulfate) 산화반응을 이용한 염소계 화합물(TCE, PCE) 분해에 관한 연구 (A Study on Persulfate Oxidation to Remove Chlorinated Solvents (TCE/PCE))

  • 송경호;도시현;이홍균;조영훈;공성호
    • 대한환경공학회지
    • /
    • 제31권7호
    • /
    • pp.549-556
    • /
    • 2009
  • Trichloroethylene (TCE)와 tetrachloroethylene (PCE)은 주로 드라이클리닝 및 산업 세척액으로 쓰이는 염소계 화합물이며, 발암성 물질로 알려져 있다. In situ chemical oxidation (ISCO)는 토양 및 지하수를 처리하는 기술로, 지표 아래에 존재하는 오염된 지역까지 산화제를 전달하여 오염물질을 처리하는 기술이다. ISCO에 사용되는 산화제 중 persulfate는 강력한 산화제인 sulfate 라디칼 (${SO_4}^{-{\cdot}}$)을 발생시켜 처리하는 기법으로, 본 연구에서는 TCE와 PCE의 분해에 persulfate 산화공정을 적용하여 초기 pH (3, 6, 9, 12), persulfate의 농도 (0.01, 0.05, 0.1, 0.3, 0.5 M), 초기오염물질농도 (10, 30, 50, 70, 100 mg/L)에 대한 영향을 알아보았다. 초기 pH가 3 일 때, TCE와 PCE는 각각 93.2%와 89.3%로 가장 높은 처리효율을 나타낸 반면, 초기 pH가 12 일 때, TCE 55.0%와 PCE 31.2%로 가장 낮은 효율을 보여 pH가 높아질수록 처리효율이 감소하는 것을 확인할 수 있었다. 또한 persulfate의 농도가 증가할수록 TCE/PCE의 처리효율이 증가하였으며, 가장 높은 persulfate의 농도 (0.5 M)에서의 처리효율은 96.5% (TCE), 95.7% (PCE) 였다. 반면 초기오염농도가 높아질수록 처리효율은 낮아지는 경향이 나타났다. 본 연구에서 얻어진 가장 빠른 분해속도를 나타내는 조건은 pH 3, persulfate 농도 0.5 M, 그리고 오염물질 (TCE/PCE) 농도 10 mg/L이었고, 이때 구해진 1차 분해속도 상수 ($k_{obs}$)는 1.04 (TCE)와 1.31 (PCE) $h^{-1}$ 였다.

하수슬러지의 습식산화반응에 대한 동력학적 연구 (Kinetics Study for Wet Air Oxidation of Sewage Sludge)

  • 안재환
    • 대한환경공학회지
    • /
    • 제27권7호
    • /
    • pp.746-752
    • /
    • 2005
  • 본 연구에서는 저임계 습식산화 조건에서 반응온도, 시간 및 압력 등 반응조건이 슬러지의 분해 및 유기산의 생성에 미치는 영향을 조사하였다. 또한, 저임계 습식산화의 분해경로 및 수정된 동력학적 모델을 제안하였으며, 다양한 조건에서 수행된 실험결과와 예측치를 비교, 검토하였다. 회분식 실험결과 반응온도는 산화반응보다는 열적가수분해 반응에 직접적으로 영향을 미치며, 반응온도와 시간이 증가할수록 슬러지의 분해효율과 유기산의 생성효율이 증가하는 것으로 나타났다. 반응온도 $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$$240^{\circ}C$, 반응시간 10 min에서 SS 농도의 제거율이 52.6%, 68.3%, 72.6% 및 74.4%로 나타나 반응 초기에 유기성 고형물(총 고형물의 약 75%)의 대부분이 액상화가 진행된 것으로 판단된다. 반응온도 $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$$240^{\circ}C$, 반응시간 40 min에서 제거 슬러지당 생성된 유기산은 각각 93.5 mg/g SS, 116.4 mg/g SS, 113.6 mg/g SS 및 123.8 mg/g SS이며, 아세트산 생성은 24.5 mg/g SS, 65.5 mg/g SS, 88.1 mg/g SS 및 121.5 mg/g SS로 나타나 반응온도가 증가할수록 유기산의 생성율도 증가하였으며, 분해되기 쉬운 유기산이 아세트산으로 전환되는 것으로 나타났다. 제안한 수정 동력학적 모델에서 반응온도가 증가함에 따라 반응속도상수 $k_1$(고형물의 액상화), $k_2$(중간산물의 유기산 생성), $k_3$(중간산물의 최종분해) 및 $k_4$(유기산의 최종 분해) 모두 증가하였다. 이는 반응온도의 증가에 따른 유기성 고형물질의 액상화와 유기산 생성율의 증가를 의미한다. 반응속도상수($k_1{\sim}k_4$)에 대한 활성화에너지를 산정한 결과, 각각 20.7 kJ/mol, 12.3 kJ/mol, 28.4 kJ/mol 및 54.4 kJ/mol로 나타나 열적가수분해 반응 보다는 산화반응이 율속단계인 것으로 판단된다.

유동조건에서 $KMnO_4$도입에 따른 수용액중 PCE/TCE의 산화분해 (Oxidative Degradation of PCE/TCE Using $KMnO_4$ in Aqueous Solutions under Steady Flow Conditions)

  • 김헌기;김태윤
    • 자원환경지질
    • /
    • 제41권6호
    • /
    • pp.685-693
    • /
    • 2008
  • 지하수가 유동하는 조건에서, $KMnO_4$의 도입에 따른 perchloroethene (PCE), trichloroethene (TCE)의 산화분해 속도를 토양컬럼을 이용한 실험실 규모의 실험을 통하여 측정하였다. 토양 컬럼을 통과하며 발생하는 PCE, TCE의 농도 감소속도에 영향을 미치는 요인으로서 산화제와 반응물의 반응접촉시간과 산화제의 농도 변화에 대한 효과를 관측하였다. 실험은 모래로 충진된 유리컬럼을 사용하였으며 반응물의 컬림도입농도는 PCE에 대하여 $0.1{\sim}0.21\;mM$, TCE에 대하여 약 $1.3{\sim}1.5\;mM$의 범위에서 일정하게 유지되었고, PCE 용액의 컬럼 내 체류시간은 $14{\sim}125$분, TCE 용액은 $15{\sim}36$분이었다. 또한 $KMnO_4$의 도입농도는 $0.6{\sim}2.5\;mM$범위에서 일정하게 유지되었다. 실험결과, PCE와 TC종의 컬럼통과시간과 컬럼유출액의 오염물질농도는 대체로 반비례 하는 것으로 나타났으나, 본 연구에서 정한 실험 조건에서는 PCE 및 TCE에 대한 반응차수를 정확히 결정할 수 없었다. 그러나 의사 1차반응으로 가정하고 계산한 반응속도 상수는 기존의 회분식 결과와 비교적 근접한 것으로 나타났다. TCE의 분해속도는 $KMnO_4$의 농도에 비례하여 증가하였으며, 이는 토양 컬럼에 PCE와 TCE가 기존의 실험과 달리 비교적 높은 농도로 도입되었기 때문으로 판단된다. 본 연구는 회분식 실험조건과 달리 유동조건에서 PCE와 TCE의 $KMnO_4$에 의한 산화분해속도를 측정함으로써 이들 오염물질로 오염된 대수층의 오염원 근처의 현장에 직접 $KMnO_4$를 적용하여 복원하는 기법을 설계하고 실행하는데 유용한 정보를 제공할 것으로 기대된다.

PdO 나노입자를 이용한 니트라민 폭발물 분해반응에 대한 1H NMR 반응속도연구 (1H NMR Kinetic Studies for Degradation of Nitramine Explosives Using PdO Nanoparticle)

  • 계영식;;김동욱
    • 공업화학
    • /
    • 제33권3호
    • /
    • pp.302-308
    • /
    • 2022
  • 사격장 피탄지에 잔류되는 고폭화약으로 인한 환경오염 문제를 해결하기 위해 표면적이 큰 나노입자를 사용한 분해반응을 연구하였다. 수질오염을 가상하여 물에 용해시킨 research department explosive (RDX)와 high melting explosive(HMX) 니트라민 폭발물에 PdO를 첨가하여 313 K에서 분해반응시켰다. 폭발물의 분해반응속도를 측정하기 위해 반응 초기부터 종료시까지 시료 손실없이 반응속도를 측정할 수 있고 스펙트럼을 통하여 반응의 진행 정도를 관찰 가능한 1H NMR을 사용하였다. NMR 피크의 chemical shift 및 peak intensity 분석으로 유사 1차 분해반응이 일어남을 확인하였으며, 측정된 RDX와 HMX의 분해반응 속도상수는 각각 2.10 × 10-2과 6.35 × 10-4 h-1이었다. 본 연구로부터 산화금속 PdO 나노입자는 니트라민 폭발물 분해반응연구에 적용 가능함을 확인하였다.

삭마 및 열분해 반응을 고려한 고체 추진기관의 열해석 (Thermal Decomposition and Ablation Analysis of Solid Rocket Propulsion)

  • 김연철
    • 한국추진공학회지
    • /
    • 제14권5호
    • /
    • pp.32-44
    • /
    • 2010
  • 고체 추진기관 노즐의 2차원 열반응 및 삭마 해석 코드를 활용하여 노즐 부품의 숯 및 삭마현상을 연구하였다. Arrhenius 식을 이용한 내부 열분해 모델 상수는 TGA(열중량분석기) 실험으로 얻었다. 탄소와 $H_2O$, $CO_2$의 산화반응에 의한 화학적 삭마는 Zvyagin이 제안한 삭마모델 과 반응속도 상수를 이용하여 해석을 수행하였다. 삭마에 의한 경계조건 및 격자 이동은 상용해석 프로그램인 MSC-Marc-ATAS에서 적용되는 Rezoning-remeshing 기법을 사용하였다. 해석된 숯 및 삭마 두께는 연소시험 결과 값과 최대 20% 오차를 보였다. 향후 열방호 시스템의 성능을 모사하기 위하여 내부 온도 및 열유속을 실시간 측정하면 3차원 FEM 통합 열구조 해석에 적용될 것으로 기대된다.

마이크로웨이브가 부가된 광촉매에 의한 메틸렌블루의 분해 (Microwave-assisted Photocatalytic Degradation of Methylene Blue)

  • 김유봉;조아라;라덕관;박재현;김선재;정상철
    • 대한환경공학회지
    • /
    • 제30권8호
    • /
    • pp.817-822
    • /
    • 2008
  • Microwave와 자외선을 동시에 조사하여 광촉매분말이 분산된 메틸렌블루수용액의 분해실험을 하였다. 광촉매반응에 microwave와 자외선을 같이 사용하기 위하여 microwave에 의해 방전되는 무전극자외선램프를 제작하였다. 실험결과 microwave의 강도, 반응수용액의 순환유속, TiO$_2$ 분말의 첨가량 그리고 산화보조제의 첨가량이 증가할수록 광촉매분해속도가 증가하였다. 특히 과산화수소를 첨가한 광촉매반응에 microwave를 부가한 실험의 반응속도상수는 0.0250 min$^{-1}$이고 광촉매반응에 과산화수소만을 첨가한 경우의 속도상수는 0.0075 min$^{-1}$로 약 3배 정도 높은 값을 나타내었다. 본 연구의 결과로부터 광촉매반응에 microwave가 미치는 영향을 정량적으로 평가하기는 어렵지만, 과산화수소가 첨가되는 광촉매반응에 microwave의 조사가 매우 중요한 인자인 것을 알 수 있었다.

바나디움 산화물의 환원 및 질화반응으로부터 얻어진 바나디움 산화질화물의 제조, 특성분석 및 암모니아 분해반응에서의 촉매 활성 (Synthesis, Characterization and Ammonia Decomposition Reaction Activity of Vanadium Oxynitride Obtained from the Reduction/Nitridation of Vanadium Oxide)

  • 윤경희;신채호
    • Korean Chemical Engineering Research
    • /
    • 제60권4호
    • /
    • pp.620-629
    • /
    • 2022
  • 가열 속도, 몰 공간속도, 질화반응온도 등 다양한 실험 조건을 변화하며 바나디움 산화물과 암모니아와의 승온 질화반응을 통하여 바나디움 산화질화물을 제조하여 특성분석을 수행하였으며 제조된 바나디움 산화질화물 상에서 암모니아 분해반응의 촉매 활성을 검토하였다. 제조된 촉매의 물리·화학적 특성을 알아보기 위하여 N2 흡착분석, X-선 회절분석(XRD), 수소 승온환원(H2-TPR), 산소 존재 하 승온산화 (TPO), 암모니아 탈착 (NH3-TPD), 투과전자현미경(TEM) 분석을 수행하였다. 340 ℃에서 5 m2 g-1의 낮은 비표면적을 갖는 V2O5의 환원에 의하여 V2O3 으로의 변환은 미세 기공 형성에 의해 115 m2 g-1 높은 비표면적 값을 보여주었으며 그 이상의 질화반응 온도가 증가함에 따라 소결현상에 의해 지속적인 비표면적의 감소를 초래하였다. 비표면적에 가장 큰 영향을 미치는 질화반응 변수는 반응온도였으며, 단일 상의 VNxOy의 x + y 값은 질화반응온도가 증가함에 따라 1.5에서 1.0으로 근접하였으며 680 ℃의 높은 반응온도에서 입방 격자상수 a는 VN 값에 근접하였다. 본 실험 조건 중에 질화반응온도가 가장 높았던 680 ℃에서 암모니아 전환율은 93%로 나타났으며 비활성화는 관찰되지 않았다.

마이크로파를 이용한 황산세륨으로 개질화 된 SiC/Al2O3 촉매의 CF4 분해 특성 (Decomposition Characteristics of CF4 by SiC/Al2O3 Modified with Cerium Sulfate Using Microwave System)

  • 최성우
    • 대한환경공학회지
    • /
    • 제37권12호
    • /
    • pp.668-673
    • /
    • 2015
  • 마이크로파 열분해 시스템을 이용하여 Ce 담지량이 다른 알루미나 촉매의 $CF_4$ 분해에 대한 연구를 실시하였다. 마이크로파 발열체로는 실리콘카바이드를 사용하였다. 각 촉매의 결정상은 XRD로 관찰하였으며 $CF_4$의 분해율은 GC-TCD를 사용하였다. $500^{\circ}C$ 반응온도에서 10 wt% Ce로 개질화한 알루미나가 개질화하지 않은 알루미나에 비해 $CF_4$ 분해율이 높았다. 반응속도상수 k값은 $Ce(20)/Al_2O_3=Ce(0)/Al_2O_3 순이었다. XRD 패턴은 $Ce(0)/Al_2O_3$에서는 반응 전후의 차이가 나타나지 않았으며 $Al_2O_3$의 결정구조만 관찰되었다. 반면에 Ce를 담지한 촉매에서는 산화알루미늄와 산화세륨의 혼합형으로 나타났다. 본 연구의 결과 Ce를 담지한 $Al_2O_3$촉매는 Ce를 담지하지 않은 촉매에 비해 동일한 분해율을 가지면서 반응온도를 $200^{\circ}C$ 정도를 낮출 수 있음을 보여주었다. 또한 cerium sulfate의 적정비율은 5~10 wt%임을 보여주었다.

오존, UV, 오존/UV 혼합 공정을 이용한 Diethyl Phthalate(DEP)의 제거특성 연구 (Characterization of Diethyl Phthalate(DEP) Removal using Ozone, UV, and Ozone/UV Combined Processes)

  • 정연정;오병수;강준원
    • 대한환경공학회지
    • /
    • 제28권2호
    • /
    • pp.137-143
    • /
    • 2006
  • 본 연구는 오존 단독, UV 단독 및 오존/UV 혼합 공정을 이용하여 DEP의 제거 특성을 알아보고자 수행되었다. 실험 결과로서, 오존/UV 공정에서 가장 높은 제거 효율을 나타냈다. 오존 및 오존/UV 공정에서 DEP의 분해 경로를 파악하기 위해서 pH 변화 및 OH 라디칼($OH^{\circ}$) scavenger 첨가 유무에 따른 제거 정도를 비교하였다. 그 결과, DEP 분해 시 $OH^{\circ}$과의 반응이 주된 반응이며, 오존에 의한 직접 산화 반응 및 UV에 의한 광분해 반응은 무시할 정도로 작았다. 오존 및 오존/UV 공정에서 DEP의 의사일차속도상수를 비교하였을 때, 오존/UV 공정은 일차속도에 잘 일치한 반면 오존 단독 공정에서는 일차속도로 제거되는 경향이 초기에 빠르고 일정한 반응시간 이후에 느려지는 두 영역으로 나뉘어 나타났다. 오존 및 오존/UV 긍정에 의해 생성되는 DEP 산화 부산물을 간접적으로 확인하기 위해 HPLC 스펙트럼을 조사한 결과 미지의 물질이 검출되었으며, 반응시간에 따라 이 물질이 생성되다가 감소하는 일정한 경향을 보였다. 또한, 오존/UV 혼합공정에서 높은 TOC 제거율을 나타내 DEP 및 DEP 산화부산물까지 완전 산화됨을 확인하였다.