Oxidative Degradation of PCE/TCE Using $KMnO_4$ in Aqueous Solutions under Steady Flow Conditions

유동조건에서 $KMnO_4$도입에 따른 수용액중 PCE/TCE의 산화분해

  • Kim, Heon-Ki (Dept. Environmental Sciences and Biotechnology, Hallym University) ;
  • Kim, Tae-Yun (Dept. Environmental Sciences and Biotechnology, Hallym University)
  • 김헌기 (한림대학교 환경생명공학과) ;
  • 김태윤 (한림대학교 환경생명공학과)
  • Published : 2008.12.28

Abstract

The rates of oxidative degradation of perchloroethene (PCE) and trichloroethene (TCE) using $KMnO_4$ solution were evaluated under the flow condition using a bench-scale transport experimental setup. Parameters which are considered to affect the reaction rates tested in this study were the contact time (or retention time), and the concentration of oxidizing agent. A glass column packed with coarse sand was used for simulating the aquifer condition. Contact time between reactants was controlled by changing the flow rate of the solution through the column. The inflow concentrations of PCE and TCE were controlled constant within the range of $0.11{\sim}0.21\;mM$ and $1.3{\sim}1.5\;mM$, respectively. And the contact time was $14{\sim}125$ min for PCE and $15{\sim}36$ min for TCE. The $KMnO_4$ concentration was controlled constant during experiment in the range of $0.6{\sim}2.5\;mM$. It was found that the reduction of PCE and TCE concentrations were inversely proportional to the contact time. The exact reaction order for the PCE and TCE degradation reaction could not be determined under the experimental condition used in this study. However, the estimated reaction rate constants assuming pseudo-1st order reaction agree with those reported based on batch studies. TCE degradation rate was proportional to $KMnO_4$ concentration. This was considered to be the result of using high inflow concentrations of reactant, which might be the case at the vicinity of the source zones in aquifer. The results of this study, performed using a dynamic flow system, are expected to provide useful information for designing and implementing a field scale oxidative removal process for PCE/TCE-contaminated sites.

지하수가 유동하는 조건에서, $KMnO_4$의 도입에 따른 perchloroethene (PCE), trichloroethene (TCE)의 산화분해 속도를 토양컬럼을 이용한 실험실 규모의 실험을 통하여 측정하였다. 토양 컬럼을 통과하며 발생하는 PCE, TCE의 농도 감소속도에 영향을 미치는 요인으로서 산화제와 반응물의 반응접촉시간과 산화제의 농도 변화에 대한 효과를 관측하였다. 실험은 모래로 충진된 유리컬럼을 사용하였으며 반응물의 컬림도입농도는 PCE에 대하여 $0.1{\sim}0.21\;mM$, TCE에 대하여 약 $1.3{\sim}1.5\;mM$의 범위에서 일정하게 유지되었고, PCE 용액의 컬럼 내 체류시간은 $14{\sim}125$분, TCE 용액은 $15{\sim}36$분이었다. 또한 $KMnO_4$의 도입농도는 $0.6{\sim}2.5\;mM$범위에서 일정하게 유지되었다. 실험결과, PCE와 TC종의 컬럼통과시간과 컬럼유출액의 오염물질농도는 대체로 반비례 하는 것으로 나타났으나, 본 연구에서 정한 실험 조건에서는 PCE 및 TCE에 대한 반응차수를 정확히 결정할 수 없었다. 그러나 의사 1차반응으로 가정하고 계산한 반응속도 상수는 기존의 회분식 결과와 비교적 근접한 것으로 나타났다. TCE의 분해속도는 $KMnO_4$의 농도에 비례하여 증가하였으며, 이는 토양 컬럼에 PCE와 TCE가 기존의 실험과 달리 비교적 높은 농도로 도입되었기 때문으로 판단된다. 본 연구는 회분식 실험조건과 달리 유동조건에서 PCE와 TCE의 $KMnO_4$에 의한 산화분해속도를 측정함으로써 이들 오염물질로 오염된 대수층의 오염원 근처의 현장에 직접 $KMnO_4$를 적용하여 복원하는 기법을 설계하고 실행하는데 유용한 정보를 제공할 것으로 기대된다.

Keywords

References

  1. Cline, S.R., West, O.R., Korte, N.E., Gardner, F.G., Siegrist, R.L. and Baker, J.L. (1997) KMnO4 chemical oxidation and deep soil mixing for soil treatment. Geotech News, v.15, p. 25-28
  2. Dai, Q. and Reitsma, S. (2002) Kinetic study of permanganate oxidatioin of tetrachloroethylene at pH 10.60$\pm$0.1. Proc. from the 3rd International Conf. on Remediation of Chlorinated and Recalcitrant Compounds, Bartelle, Monterey, Ca
  3. Gates, D.D., Siegrist, R.L. and Cline, S.R. (1995) Chemical oxidation of contaminants in clay or sandy soil. Proc. ASCE Nalt. Conf. Environ. Eng. ASCE, New York, p. 582-588
  4. Hood, E.D., Thomson, N.R., Grossi, D. and Farquhar, G. J. (2000) Experimental determination of the kinetic rate law for the oxidation of perchloroethylene by potassium permanganate. Chemosphere, v. 40, p. 1383-1388 https://doi.org/10.1016/S0045-6535(99)00278-7
  5. Huang, K.-C., Hoag, G.E., Chheda, P., Woody, B.A. and Dobbs, G. M. (1999) Kinetic study of oxidation of trichloroethylene by potassium permanganate. Environ. Eng. Sci., v. 16, p. 265-274 https://doi.org/10.1089/ees.1999.16.265
  6. Huang, K.-C., Hoag, G.E., Chheda, P., Woody, B.A. and Dobbs, G. M. (2002) Kinetics and mechanism of oxidation of tetrachloroethylene with permanganate. Chemosphere, v. 46, p. 815-825 https://doi.org/10.1016/S0045-6535(01)00186-2
  7. Ibaraki, M. and Schwartz, F.W. (2001) Influence of natural heterogeneity on the efficiency of chemical floods in source zones. Ground Water, v. 39, p. 660-666 https://doi.org/10.1111/j.1745-6584.2001.tb02355.x
  8. Lowe, K.S., Gardner, F.G. and Siegrist, R.L. (2002) Field evaluation of in situ chemical oxidation through vertical well-to-well recirculation of NaMnO4. Ground Water Monit. Remediat., v. 22. p. 106-115
  9. MacKinnon, L.K. and Thomson, N.R. (2002) Laboratoryscale in situ chemical oxidation of a perchloroethylene pool using permanganate. J. Contam. Hydrol., v. 56, p. 49-74 https://doi.org/10.1016/S0169-7722(01)00203-0
  10. Mumford, K.G., Thomson, N.R. and Allen-King, R.M. (2005) Bench-scale investifation of permanganate nat- ural oxdant demand kinetics. Environ. Sci. Technol., v. 39, p. 2835-2840 https://doi.org/10.1021/es049307e
  11. Nkedi-Kizza, P., Biggar, J.W., Selim, H.M., van Genuchten, M. Th., Wierenga, P.J., Davidson, J.M. and Nielsen, D. R. (1984) On the equivalence of two conceptual models for describing ion exchange during transport through an aggregated oxisol. Water Resour. Res., v. 20, p. 1123-1130 https://doi.org/10.1029/WR020i008p01123
  12. Rees, T. (1987) The stability of potassium permanganate solutions. J. Chem. Educ., v. 64. p. 1058 https://doi.org/10.1021/ed064p1058
  13. Schnarr, M., Truax, C., Farquhar, G., Hood, E., Gonully, T. and Stickney, B. (1998) Laboratory and controlled field experimentation using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media. J. Contam. Hydrol., v. 29. p. 205-224 https://doi.org/10.1016/S0169-7722(97)00012-0
  14. Schroth, M.H., Oostrom, M., Wietsma, T.W. and Istok, J. D. (2001) In situ oxidatin of trichloroethene by permanganate: effects on porous medium hydraulic properties. J. Contam. Hydrol., v. 50. p. 79-98 https://doi.org/10.1016/S0169-7722(01)00098-5
  15. Seol, Y., Zhang, H. and Schwartz, F. W. (2003) A review on in situ chemical oxidation and heterogeneity. Environ. Eng. Geosci., v. 9, p. 37-49 https://doi.org/10.2113/9.1.37
  16. Siegrist, R.L., Lowe, K.S., Murdoch, L.C., Case, T.L. and Pickering, D.A. (1999) In situ oxidation by fracture emplaced reactive solids. J. Environ. Eng., v. 125. p. 429-440 https://doi.org/10.1061/(ASCE)0733-9372(1999)125:5(429)
  17. Siegrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L. and Lowe, K. S. (2001) Principles and Practices of In Situ Chemical Oxidation Using Permanganate, Bartelle Press, Columbus, OH, 348p
  18. Struse, A.M., Siegrist, R.L., Dawson, H.E. and Urynowicz, M. A. (2002) Diffusive transport of permanganate during in situ oxidation. J. Environ. Eng., v. 128, p. 327-334 https://doi.org/10.1061/(ASCE)0733-9372(2002)128:4(327)
  19. Valocchi, A.J. (1985) Validity of the local equilibrium assumption for modeling sorbing solute transport through homogeneous soils. Water Resour. Res., v. 21, p. 808-820 https://doi.org/10.1029/WR021i006p00808
  20. Yan, Y.E. and Schwartz, F.W. (1999) Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. J. Contam. Hydrol. v. 37, p. 343-365 https://doi.org/10.1016/S0169-7722(98)00166-1