• Title/Summary/Keyword: 산화배소

Search Result 40, Processing Time 0.024 seconds

Pretreatment for Recycling of Domestic Aluminum Dross (국내 알루미늄 드로스의 처리공정에 관한 연구)

  • 박형규;이후인;김준수;윤의박
    • Resources Recycling
    • /
    • v.5 no.1
    • /
    • pp.14-20
    • /
    • 1996
  • For recycl~ng alumhx~rn dross, the cbaraclcrislics of dross and ils reutll~zalin~af~te r plocsssing should he considered. Nurn~llumd ross was classified according to iB sire in this shldy. Tbe dross larger Illan 3001~1w as directly re-meltcd to recover aluminum, and the s~nallerd ~ossw as leachcd and riln~tedl o scparalc 111s eri~lerls alt and to oxidize the rnelals contained in the dross. As a rcwlt, amount of the dross uscd lo be dircarded ahcr processing could hc reduced Also, lhc chem~cal culnposit~ons of a domzstic alumlnum dross and the changes in con~posilii~ndsu ring processings were investigated. and Cound that most mctaU'ic aluminum in the dross was changed inlu alu~n~numox ide lhruugli the roasting. Tile processed dross would he ulillzed for malerials such as alumina, alumma cemenl or tilcs.

  • PDF

Lithium Recovery from NCM Lithium-ion Battery by Carbonation Roasting with Graphite Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 그라파이트 첨가 탄산화 배소와 수침출에 의한 Li 회수)

  • Lee, So-Yeon;Lee, Dae-Hyeon;Lee, So-Yeong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.26-33
    • /
    • 2022
  • Owing to the demand for lithium-ion batteries, the recovery of valuable metals from waste lithium-ion batteries is required in future. A pyrometallurgical treatment is appropriate for recycling a large number of waste lithium-ion batteries, but Li loss to slag and dust present a significant challenge. This research investigated carbonation roasting and water leaching behaviors in Li-ion batteries by graphite addition to recover Li from the NCM-based cathode materials of waste Li-ion batteries. When 10 wt% of graphite was added, CO and CO2 gases were emitted with a rapid weight reduction at apporoximately 850 K, when heated in Ar and CO2 atmosphere. After the rapid weight reduction, NCM was decomposed and reduced to metal oxides and pure metals. In the carbonation roasting of black powder (NCM+graphite), O2 is generated via the decomposition of NCM, and an oxides, such as Li2O and NiO were were also generated. Subsequently, Li2O reacts with CO2 to generate Li2CO3, and a part of NiO was reduced by graphite to produce metal Ni. In addition, up to 94.5 % Li2CO3 with ~99.95 % purity was recovered via water leaching after carbonation roasting.

산화루테늄(RuO2) 제조기술

  • 이강명;이기웅;정경원
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.281-283
    • /
    • 1996
  • 전자제품의 경박 단소화에 필수 부품인 칩저항기, HIC 등의 제조 기술은 급속한 성장을 이룬 반면에 가장 중요한 특성을 발현하는 전극 재료 및 저항 재료의 제조는 기술적으로 취약한 부분이다. RuO2와 Pb2Ru2O5.5는 저항 페이스트의 가장 중요한 원재료로서 저항 편차, 온도저항계수(TCR), 전압저항계수(VCR), NOISE 등의 전기적 특성과 페이스트이 흐름성, 보존 안정성 등의 작업성에 큰 영향을 미친다. 외국에서 산화 루테늄 분말 제조에 대한 많은 연구가 진행되어 오고 있으나 대부분 출발 물질을 염화 루테늄을 사용하여 RuO2 분말을 제조하고 있다. 이렇게 제조된 RuO2 분말은 전자 재료에 악영향을 미치는 염소이온이 잔류할 가능성이 높다. 본 연구에서는 Ru metal에서 루테늄산염을 만들어 위의 문제를 최소화 하였고, 전기적 특성이 우수한 고분산 초미립의 RuO2를 얻기 위해 산화, 환원, 정제, 배소 등의 제조 공정에 있어서 최적 조건을 고찰 하였다.

  • PDF

A Study on the Separation and Recovery of Useful Metallic Elements(Zn, Pb) from the 2nd Dust in Refining of Crude-Zinc Oxide (조산화아연의 정제과정에서 발생된 2차분진으로부터 유용금속원소(Zn, Pb)의 분리회수에 관한 연구)

  • Yoon, Jae-hong;Yoon, Chi-hyun
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.66-76
    • /
    • 2021
  • Electric arc furnace dust (EAFD) contains compounds, such as oxides and chlorides, including large quantities of Zn, Pb and Fe. An efficient and stable method for the extraction of metal elements from EAFD is the Rotary Kiln Process. This method is used to recover Zn in the form of crude ZnO (approximately 60%) via the addition of a reducing agent (coke, anthracite) and limestone (for basicity control) to EAFD. This process is commonly used in industry as well as in research and development. Currently, this method is used in many Korean commercial plants, producing approximately 150,000 tons of Crude ZnO per year. The majority of Zn is found in crude ZnO (approximately 76%). In addition components such as Pb, Cd, Sn, In, Fe, Cl, and F are present as oxides, chlorides, and alkaline compounds. This elements have an adverse effect on the zinc smelting process. Therefore, a refining process that eliminates these impurities is essential. In this study, we developed a process technology that efficiently separates Zn and Pb from byproducts (mainly chlorides). A bag filter was used to collect Zn and Pb generated during the dry purification process of crude ZnO. Pure components were recovered as metals or metal carbonate.

Removal and Separation of Metallic Constituents from the By-product Recovered from Gold Mine Tailings (금(金) 광산(鑛山) 폐광미(廢鑛尾)로부터 회수(回收)된 금속광물(金屬鑛物) 부산물(副産物) 중의 금속성분(金屬成分) 분리(分離), 제거연구(除去硏究))

  • Youn, Ki-Byoung
    • Resources Recycling
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2010
  • Domestic gold mine tailings, generally, contain a lot of non-metallic silica and clay minerals. These minerals can be separated from the tailings by various physical separation methods and used as raw materials for cements and ceramic products. In these physical separation procedures, metallic complex sulfides, in which Au and metallic constituents such as Pb, As and Fe were concentrated, were obtained as a by-product. These metallic constituents should be removed or separated from the by-product to extract Au efficiently. In this work, removal and separation processes of Pb, As, and Fe from the by-product were investigated. Pb was removed to under 3% by using alkaline oxidative leaching at the leaching condition of $120^{\circ}C$, 2M NaOH, 100psi $Po_2$, 250r.p.m., 4 wt.% solid and 30 min. leaching time. The leached residue was roasted and separated magnetically to obtain a non-magnetic product contained <0.2% As, <3% Fe and high concentrated Au more than 8,000 ppm.

A study on the Separation/recovery of Rare Earth Elements from Wast Permanent Magnet by a Fractional Crystallization Method and Sulfuric Acid Leaching (폐영구자석 황산침출과 분별결정법에 의한 희토류 분리·회수에 대한 연구)

  • Kim, Dae-Weon;Kim, Hee-Seon;Kim, Boram;Jin, Yun-Ho
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.103-109
    • /
    • 2022
  • Nd-Fe-B waste permanent magnet contains about 20~30% rare earth elements and about 60~70% iron elements, and the rare earth and iron components were recovered through sulfuric acid leaching and fractional crystallization. Oxidation roasting was not performed for separation and recover of the rare earth and iron elements. The leaching characteristics were confirmed by using as variables the sulfuric acid concentration and the mineral solution concentration ratio. Sulfuric acid leaching was carried out for 3 hours for each sulfuric acid concentration. The leached solid phase was characterized for its crystalline phase, composition, and quantitative components by XRD and XRF analysis, and the filtrate was analyzed for components by ICP analysis. With sulfuric acid leaching at 3M sulfuric acid concentration, neodymium compounds were formed, the iron content was the least, and the recovery rate was high. After the filtrate remaining after sulfuric acid leaching was subjected to fractional crystallization through evaporation and concentration, the neodymium component was found to be concentrated 7.0 times and the iron component 2.8 times. In this study, the recovery rate of waste permanent magnets through sulfuric acid leaching and a fractional crystallization method without an oxidation and roasting process was confirmed to be about 99.4%.

A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder (폐 배터리 셀 분말의 선택적 리튬 침출을 위한 질산염화 공정 최적화 연구)

  • Jung, Yeon Jae;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, the optimal nitration process for selective lithium leaching from powder of a spent battery cell (LiNixCoyMnzO2, LiCoO2) was studied using Taguchi method. The nitration process is a method of selective lithium leaching that involves converting non-lithium nitric compounds into oxides via nitric acid leaching and roasting. The influence of pretreatment temperature, nitric acid concentration, amount of nitric acid, and roasting temperature were evaluated. The signal-to-noise ratio and analysis of variance of the results were determined using L16(44) orthogonal arrays. The findings indicated that the roasting temperature followed by the nitric acid concentration, pretreatment temperature, and amount of nitric acid used had the greatest impact on the lithium leaching ratio. Following detailed experiments, the optimal conditions were found to be 10 h of pretreatment at 700℃ with 2 ml/g of 10 M nitric acid leaching followed by 10 h of roasting at 275℃. Under these conditions, the overall recovery of lithium exceeded 80%. X-ray diffraction (XRD) analysis of the leaching residue in deionized water after roasting of lithium nitrate and other nitrate compounds was performed. This was done to determine the cause of rapid decrease in lithium leaching rate above a roasting temperature of 400℃. The results confirmed that lithium manganese oxide was formed from lithium nitrate and manganese nitrate at these temperatures, and that it did not leach in deionized water. XRD analysis was also used to confirm the recovery of pure LiNO3 from the solution that was leached during the nitration process. This was carried out by evaporating and concentrating the leached solution through solid-liquid separation.

A Study on the Leaching of Vanadium and Nickel from Heavy Oil Fly Ash (중유회로부터 바나듐과 니켈 침출에 관한 연구)

  • 박경호
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 1992
  • The extration of vanadium and nickel from heavy oil fly ash was carried out by using water ans sulfuric acid as leaching agent. In the leaching with water, vanadium and nickel were extracted 86% and 88% respectively under pulp density of 25g/l, room temperature and leaching time of 60 minutes, but extraction of vanadium decreased with increasing leaching time. Addition of oxidant decreased the extractions of vanadium and nickel, and roasting of fly ash at temperature higher than $300^{\circ}C$ before water leaching decreased the vanadium extraction to about zero. In the leaching with 1N sulfuric acid, the extractions of vanadium and nickel both increased to 96% and the addition of oxidant did not affect the extraction of these metals.

  • PDF

Preparation of Castable Refractories by Recycling of Aluminum Dross (알루미늄드로스를 재활용한 캐스타블내화물 제조)

  • Park Hyungkyu;Lee Hooin;Lee Jinyoung
    • Resources Recycling
    • /
    • v.12 no.3
    • /
    • pp.46-53
    • /
    • 2003
  • Recycling of aluminum dross is an important issue in the secondary aluminum industries. In this study, aluminum dross generated in the domestic secondary aluminum industry was processed to use it as raw material for producing alumina refractories. Sample dross was classified according to its size. The dross smaller than 1 mm was leached with sodium hydroxide solution to extract the remained aluminum from the dross into the solution. and then aluminum hydroxide precipitate was recovered from the leach liquor. The waste residue in the leaching was washed, dried and roasted. Most remained metallic components in the residue was changed into oxide through the processes. The roasted dross was made into alumina castable refractories by mixing with aggregates and a binder. Bending strength of the tested castable specimen was over $25\;kg/\textrm{m}^2$ and compressive strength over $80\;kg/\textrm{cm}^2$, which satisfied the Korean Standard value respectively. From the results, it was suggested that this process could be applicable to recycling of aluminum dross.