DOI QR코드

DOI QR Code

A Study on Optimization of Nitric Acid Leaching and Roasting Process for Selective Lithium Leaching of Spent Batreries Cell Powder

폐 배터리 셀 분말의 선택적 리튬 침출을 위한 질산염화 공정 최적화 연구

  • Jung, Yeon Jae (Korea Institute of Industrial Technology) ;
  • Park, Sung Cheol (Korea Institute of Industrial Technology) ;
  • Kim, Yong Hwan (Korea Institute of Industrial Technology) ;
  • Yoo, Bong Young (Department of Materials Science and Chemical Engineering, Hanyang University) ;
  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Institute of Rare Metal, Mokpo National University) ;
  • Son, Seong Ho (Korea Institute of Industrial Technology)
  • Received : 2021.11.03
  • Accepted : 2021.12.16
  • Published : 2021.12.31

Abstract

In this study, the optimal nitration process for selective lithium leaching from powder of a spent battery cell (LiNixCoyMnzO2, LiCoO2) was studied using Taguchi method. The nitration process is a method of selective lithium leaching that involves converting non-lithium nitric compounds into oxides via nitric acid leaching and roasting. The influence of pretreatment temperature, nitric acid concentration, amount of nitric acid, and roasting temperature were evaluated. The signal-to-noise ratio and analysis of variance of the results were determined using L16(44) orthogonal arrays. The findings indicated that the roasting temperature followed by the nitric acid concentration, pretreatment temperature, and amount of nitric acid used had the greatest impact on the lithium leaching ratio. Following detailed experiments, the optimal conditions were found to be 10 h of pretreatment at 700℃ with 2 ml/g of 10 M nitric acid leaching followed by 10 h of roasting at 275℃. Under these conditions, the overall recovery of lithium exceeded 80%. X-ray diffraction (XRD) analysis of the leaching residue in deionized water after roasting of lithium nitrate and other nitrate compounds was performed. This was done to determine the cause of rapid decrease in lithium leaching rate above a roasting temperature of 400℃. The results confirmed that lithium manganese oxide was formed from lithium nitrate and manganese nitrate at these temperatures, and that it did not leach in deionized water. XRD analysis was also used to confirm the recovery of pure LiNO3 from the solution that was leached during the nitration process. This was carried out by evaporating and concentrating the leached solution through solid-liquid separation.

본 연구에서는 Taguchi method을 사용하여 폐 배터리 셀 분말(LiNixCoyMnzO2, LiCoO2)으로부터 선택적 리튬 침출을 위한 최적의 질산염화 공정에 대한 연구를 진행했다. 질산염화 공정은 질산 침출 및 배소를 통해 질산리튬을 제외한 질산 화합물을 산화물로 변환하여 선택적 리튬 침출을 하는 공정이다. 따라서 전처리 온도, 질산 농도, 질산 침적 양, 배소 온도에 대하여 Taguchi method를 적용하여 인자가 미치는 영향에 대한 분석을 실시하였다. L16(44)직교 배열표를 사용하여 실험하였으며, 신호 대 잡음비(S/N) 및 분산 분석(ANOVA)을 분석하였다. 그 결과 배소 온도가 가장 크게 영향을 미쳤으며 질산 농도, 전처리 온도, 질산 사용량 순으로 영향을 미쳤다. 각 인자에 대해 세부적인 실험을 진행한 결과 전처리 700℃에서 10시간, 10 M 질산 2 ml/g 침출, 275℃ 배소 10시간이 적절하였다. 그 결과 80% 이상의 리튬을 침출을 확인하였다. 400℃ 이상 배소 시 급격하게 리튬 침출율이 감소원인 분석을 위해 질산리튬과 질산 화합물을 배소 후 D.I water에서 침출하지 잔류물에 대해 XRD 분석을 진행하였다. 분석 결과 질산리튬과 질산망간과 400℃ 이상의 온도에서 리튬 망간 옥사이드의 형성하며 D.I water에서 침출하지 않음을 확인하였다. 질산염화 공정 시 침출된 용액을 고액분리 후 증발농축하여 XRD 분석한 결과 LiNO3의 회수를 확인하였다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부 및 산업기술평가 관리원(KEIT) 연구비 지원에 의한 연구결과(과제번호 20011183)이며 이에 감사드립니다.

References

  1. Pillot, C., 2013 : Micro hybrid, HEV, P-HEV and EV market 2012-2025 impact on the battery business, American Institute of Electrical Engineers, In: Proceedings of World Electric Vehicle Symposium and Exhibition (EVS27), pp. 1-6.
  2. Cazzola, P., Gorner, M., Schuitmaker, R., et al., 2016 : Global EV Outlook 2016, Inter national Energy Agency.
  3. Reinhardt, R., Domingo, S. G., Garcia, B. A., et al., 2017 : Macro environmental analysis of the electric vehicle battery second use market, American Institute of Electrical Engineers, pp.1-6.
  4. Bunsen, T., Cazzola, P., Gorner, M., et al., 2018 : Global EV Outlook 2018: Towardscross-modal electrification, International Energy Agency.
  5. Kim, Y., Lim, J. and Lim, O.T., 2019 : Electric vehicle market and battery related technology research trends, New Energy Soc., 30(4), pp.362-368.
  6. Levay, P.Z., Drossinos, Y. and Thiel, C., 2017 : The effect of fiscal incentives on market penetration of electric vehicles: A pairwise comparison of total cost of ownership, Energy Policy, 105, pp.524-533. https://doi.org/10.1016/j.enpol.2017.02.054
  7. Bae, H. and Kim, Y., 2021 : Technologies of lithium recycling from waste lithium-ion batteries: A review, Materials Advances, 2, pp.3234-3250. https://doi.org/10.1039/D1MA00216C
  8. Heelan, J., Gratz, E., Zheng, Z., et al., 2016 : Current and prospective Li-ion battery recycling and recovery processes, JOM, 68(10), pp.2632-2638. https://doi.org/10.1007/s11837-016-1994-y
  9. Miller, James F. and Urs Muntwyler, 2016 : International Cooperation on Public Policies and Strategies for Hybrid & Electric Vehicles under the International Energy Agency, World Electric Vehicle Journal, 8(4), pp.842-845. https://doi.org/10.3390/wevj8040842
  10. Ballon and Massie Santos, 2010 : Electrovaya, Tata Motors to make electric Indica, cleantech.com. Cleantech Group, 2(4), pp.24-32.
  11. P. Meshram, B. D. Pandey and T. R. Mankhand, 2014 : Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review, Hydrometallurgy, 150, pp.192-208. https://doi.org/10.1016/j.hydromet.2014.10.012
  12. Roy, R.K., 2001 : Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement, USA, John Wiley & Sons, Inc.
  13. Taguchi, G., 1986 : Introduction to Quality Engineering: Designing Quality into Products and Processes, Asian Productivity Organization, No. 658.562 T3.
  14. Karna, S. K. and Sahai, R., 2012 : An overview on Taguchi method, International Journal of Engineering and d Mathematical Sciences, 1(1), pp.1-7.
  15. Lee, C.K. and Rhee, K., 2002 : Preparation of LiCoO2 from spent lithium-ion batteries, J. Power Sources, 109(1), pp. 17-21. https://doi.org/10.1016/S0378-7753(02)00037-X
  16. Zivkovic, Z., Zivkovic, D. and Grujicic, D., 1998 : Kinetics and mechanism of the thermal decomposition of M(NO3)2.nH2O (M=Cu, Co, Ni), J. Therm. Anal. Calorim., 53(2), pp.617-623. https://doi.org/10.1023/A:1010170231923
  17. Brockner, W., Ehrhardt, C. and Gjikaj, M., 2007 : Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2.6H2O, in comparison to Co(NO3)2.6H2O and Ca (NO3)2.4H2O, Thermochim. Acta, 456(1), pp.64-68. https://doi.org/10.1016/j.tca.2007.01.031