• Title/Summary/Keyword: 산업계

Search Result 5,046, Processing Time 0.035 seconds

Comparison of ESG Evaluation Methods: Focusing on the K-ESG Guideline (ESG 평가방법 비교: K-ESG 가이드라인을 중심으로)

  • Chanhi Cho;Hyoung-Yong Lee
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.1-25
    • /
    • 2023
  • ESG management is becoming a necessity of the times, but there are about 600 ESG evaluation indicators worldwide, causing confusion in the market as different ESG ratings were assigned to individual companies according to evaluation agencies. In addition, since the method of applying ESG was not disclosed, there were not many ways for companies that wanted to introduce ESG management to get help. Accordingly, the Ministry of Trade, Industry and Energy announced the K-ESG guideline jointly with the ministries. In previous studies, there were few studies on the comparison of evaluation grades by ESG evaluation company or the application of evaluation diagnostic items. Therefore, in this study, the ease of application and improvement of the K-ESG guideline was attempted by applying the K-ESG guideline to companies that already have ESG ratings. The position of the K-ESG guideline is also confirmed by comparing the scores calculated through the K-ESG guideline for companies that have ESG ratings from global ESG evaluation agencies and domestic ESG evaluation agencies. As a result of the analysis, first, the K-ESG guideline provide clear and detailed standards for individual companies to set their own ESG goals and set the direction of ESG practice. Second, the K-ESG guideline is suitable for domestic and global ESG evaluation standards as it has 61 diagnostic items and 12 additional diagnostic items covering the evaluation indicators of global representative ESG evaluation agencies and KCGS in Korea. Third, the ESG rating of the K-ESG guideline was higher than that of a global ESG rating company and lower than or similar to that of a domestic ESG rating company. Fourth, the ease of application of the K-ESG guideline is judged to be high. Fifth, the point to be improved in the K-ESG guideline is that the government needs to compile industry average statistics on diagnostic items in the K-ESG environment area and publish them on the government's ESG-only site. In addition, the applied weights of E, S, and G by industry should be determined and disclosed. This study will help ESG evaluation agencies, corporate management, and ESG managers interested in ESG management in establishing ESG management strategies and contributing to providing improvements to be referenced when revising the K-ESG guideline in the future.

Protective Effects of Trifolium pratense L. Extract against H2O2-induced Oxidative Stress in HaCaT Keratinocytes (인간 피부각질세포에서 Hydrogen peroxide로 유도된 산화적 스트레스에 대한 붉은 토끼풀 추출물의 세포 보호 효과)

  • Mi Song Shin;You Kyeong Lee;Seo Young Choi;Ji Sun Hwang;Parkyong Song;Hyeon Cheal Park;Keun Ki Kim;Hong-Joo Son;Yu-Jin Kim;Kwang Min Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.223-232
    • /
    • 2023
  • Oxidative stress plays a significant role in the pathogenesis of various skin conditions, resulting in cellular and tissue damage that can contribute to the development of skin tone unevenness, roughness and wrinkles. In this study, we found that Trifolium pratense L. extract (TE) attenuated oxidative-induced damage in HaCaT cells and elucidated the underlying molecular mechanism. Our finding demonstrated that TE effectively protected HaCaT cells against H2O2-induced cell death by inhibiting caspase-3 activation, downregulating Bax and upregulating Bcl-2, and attenuating the activation of three mitogen-activated protein kinases (MAPKs). Our results suggest that TE has remarkable cytoprotective properties against oxidative damage in HaCaT cells and could serve as a complementary or alternative approach to prevent and treat skin damage.

Constructing a Conceptual Framework of Smart Ageing Bridging Sustainability and Demographic Transformation (인구감소 시대와 초고령 사회의 지속가능한 삶으로서 스마트 에이징의 개념과 모형에 관한 탐색적 연구)

  • Hyunjeong Lee;JungHo Park
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.1-16
    • /
    • 2023
  • As population ageing and shrinking accompanied by dramatically expanded individual life expectancy and declining fertility rate is a global phenomenon, ageing becomes its broader perspective of ageing well embedded into sustained health and well-being, and also the fourth industrial revolution speeds up a more robust and inclusive view of smart ageing. While the latest paradigm of SA has gained considerable attention in the midst of sharply surging demand for health and social services and rapidly declining labor force, the definition has been widely and constantly discussed. This research is to constitute a conceptual framework of smart ageing (SA) from systematic literature review and the use of a series of secondary data and Geographical Information Systems(GIS), and to explore its components. The findings indicate that SA is considered to be an innovative approach to ensuring quality of life and protecting dignity, and identifies its constituents. Indeed, the construct of SA elaborates the multidimensional nature of independent living, encompassing three spheres - Aging in Place (AP), Well Aging (WA), and Active Ageing (AA). AP aims at maintaining independence and autonomy, entails safety, comfort, familiarity and emotional attachment, and it values social supports and services. WA assures physical, psycho-social and economic domains of well-being, and it concerns subjective happiness. AA focuses on both social engagement and economic participation. Moreover, the three constructs of SA are underpinned by specific elements (right to housing, income adequacy, health security, social care, and civic engagement) which are interrelated and interconnected.

A Study on the Impact of Venture Capital Investment Experience and Job Fit on Fund Formation and Investment Rate of Return (벤처캐피탈의 투자경험과 직무적합도가 펀드결성과 투자수익률에 미치는 영향력에 관한 연구)

  • Kim Dae-Hee;Ha Kyu-So
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.37-50
    • /
    • 2023
  • Venture capital invests the necessary capital and supports management and technology in promising small and medium-sized venture companies in the early stages of start-up with promising technology and excellent manpower. It plays a role as a key player in the venture ecosystem that realizes profits by collecting the investment through various means after growth. Venture capital's job is to recruit various investors(LPs) to invest in small and medium-sized venture companies with growth potential through the formation of venture investment funds, and to collect investment as companies grow, distribute and reinvest. The main tasks of venture capitalists, which play the most important role in venture investment, are finding promising companies, corporate analysis and evaluation, investment screening, follow-up management, and investment recovery. Venture capital's success indicators are fund formation and return on investment, and venture capitalists are rewarded with annual salary, performance-based incentive, and promotion with work performance such as investment, exit, and fund formation. Compared to the recent rapidly growing venture investment market, investment manpower is insufficient, and venture capital is making great efforts to foster manpower and establish infrastructure and systems for long-term service, but research has been conducted mainly from a quantitative perspective. Accordingly, this study aims to empirically analyzed the impact of investment experience, delegation of authority, job fit, and peer relationships on fund formation and return on investment according to the characteristics of the venture capital industry. The results of these empirical studies suggested that future venture capital needs a job environment and manpower operation strategy so that venture capitalists with high job fit and investment experience can work for a long time.

  • PDF

Exploring the Model of Social Enterprise in Sport: Focused on Organization Form(Type) and Task (스포츠 분야 사회적기업의 모델 탐색: 조직형태 및 과제)

  • Sang-Hyun Park;Joo-Young Park
    • Journal of Industrial Convergence
    • /
    • v.22 no.2
    • /
    • pp.73-83
    • /
    • 2024
  • The purpose of this study is to diagnose various problems arising around social enterprises in the sport field from the perspective of the organization and derive necessary tasks and implications. In order to achieve the purpose of the study, the study was largely divided into three stages, and the results were derived. First, the main status and characteristics of social enterprises in the sport field were examined. The current status was analyzed focusing on aspects such as background and origin, legislation and policy, organizational goals, organizational structure and procedures, and organizational characteristics. Social enterprises in the sport sector were in their early stages, and the government's social enterprise policy goal tended to focus on increasing the number of social enterprises in a short period of time through financial input. In addition, it was found that most individual companies rely on government subsidy support due to insufficient profit generation capacity. In the second stage, we focused on the situational factors that affect the functional performance of social enterprises in the sport field. As a result of reviewing the value, ideology, technology, and history of the organization, which are situational factors, it was derived that when certified as a social enterprise in the sport field and supported by the central government or local governments, political control is strong to some extent and exposure to the market is not severe. In the last third step, tasks and implications were derived to form an appropriate organization for social enterprises in the sport field. After the social enterprise ecosystem in the sport sector has been established to some extent, it is necessary to gradually move from the current "government-type" organization to the "national enterprise" organization. This is true in light of the government's limited financial level, not in the short term, but in order for the organization of social enterprises in the sports sector to survive in the long term.

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

A Comparative Analysis of Social Commerce and Open Market Using User Reviews in Korean Mobile Commerce (사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석)

  • Chae, Seung Hoon;Lim, Jay Ick;Kang, Juyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.4
    • /
    • pp.53-77
    • /
    • 2015
  • Mobile commerce provides a convenient shopping experience in which users can buy products without the constraints of time and space. Mobile commerce has already set off a mega trend in Korea. The market size is estimated at approximately 15 trillion won (KRW) for 2015, thus far. In the Korean market, social commerce and open market are key components. Social commerce has an overwhelming open market in terms of the number of users in the Korean mobile commerce market. From the point of view of the industry, quick market entry, and content curation are considered to be the major success factors, reflecting the rapid growth of social commerce in the market. However, academics' empirical research and analysis to prove the success rate of social commerce is still insufficient. Henceforward, it is to be expected that social commerce and the open market in the Korean mobile commerce will compete intensively. So it is important to conduct an empirical analysis to prove the differences in user experience between social commerce and open market. This paper is an exploratory study that shows a comparative analysis of social commerce and the open market regarding user experience, which is based on the mobile users' reviews. Firstly, this study includes a collection of approximately 10,000 user reviews of social commerce and open market listed Google play. A collection of mobile user reviews were classified into topics, such as perceived usefulness and perceived ease of use through LDA topic modeling. Then, a sentimental analysis and co-occurrence analysis on the topics of perceived usefulness and perceived ease of use was conducted. The study's results demonstrated that social commerce users have a more positive experience in terms of service usefulness and convenience versus open market in the mobile commerce market. Social commerce has provided positive user experiences to mobile users in terms of service areas, like 'delivery,' 'coupon,' and 'discount,' while open market has been faced with user complaints in terms of technical problems and inconveniences like 'login error,' 'view details,' and 'stoppage.' This result has shown that social commerce has a good performance in terms of user service experience, since the aggressive marketing campaign conducted and there have been investments in building logistics infrastructure. However, the open market still has mobile optimization problems, since the open market in mobile commerce still has not resolved user complaints and inconveniences from technical problems. This study presents an exploratory research method used to analyze user experience by utilizing an empirical approach to user reviews. In contrast to previous studies, which conducted surveys to analyze user experience, this study was conducted by using empirical analysis that incorporates user reviews for reflecting users' vivid and actual experiences. Specifically, by using an LDA topic model and TAM this study presents its methodology, which shows an analysis of user reviews that are effective due to the method of dividing user reviews into service areas and technical areas from a new perspective. The methodology of this study has not only proven the differences in user experience between social commerce and open market, but also has provided a deep understanding of user experience in Korean mobile commerce. In addition, the results of this study have important implications on social commerce and open market by proving that user insights can be utilized in establishing competitive and groundbreaking strategies in the market. The limitations and research direction for follow-up studies are as follows. In a follow-up study, it will be required to design a more elaborate technique of the text analysis. This study could not clearly refine the user reviews, even though the ones online have inherent typos and mistakes. This study has proven that the user reviews are an invaluable source to analyze user experience. The methodology of this study can be expected to further expand comparative research of services using user reviews. Even at this moment, users around the world are posting their reviews about service experiences after using the mobile game, commerce, and messenger applications.

An Analysis of the Comparative Importance of Systematic Attributes for Developing an Intelligent Online News Recommendation System: Focusing on the PWYW Payment Model (지능형 온라인 뉴스 추천시스템 개발을 위한 체계적 속성간 상대적 중요성 분석: PWYW 지불모델을 중심으로)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.75-100
    • /
    • 2018
  • Mobile devices have become an important channel for news content usage in our daily life. However, online news content readers' resistance to online news monetization is more serious than other digital content businesses, such as webtoons, music sources, videos, and games. Since major portal sites distribute online news content free of charge to increase their traffics, customers have been accustomed to free news content; hence this makes online news providers more difficult to switch their policies on business models (i.e., monetization policy). As a result, most online news providers are highly dependent on the advertising business model, which can lead to increasing number of false, exaggerated, or sensational advertisements inside the news website to maximize their advertising revenue. To reduce this advertising dependencies, many online news providers had attempted to switch their 'free' readers to 'paid' users, but most of them failed. However, recently, some online news media have been successfully applying the Pay-What-You-Want (PWYW) payment model, which allows readers to voluntarily pay fees for their favorite news content. These successful cases shed some lights to the managers of online news content provider regarding that the PWYW model can serve as an alternative business model. In this study, therefore, we collected 379 online news articles from Ohmynews.com that has been successfully employing the PWYW model, and analyzed the comparative importance of systematic attributes of online news content on readers' voluntary payment. More specifically, we derived the six systematic attributes (i.e., Type of Article Title, Image Stimulation, Article Readability, Article Type, Dominant Emotion, and Article-Image Similarity) and three or four levels within each attribute based on previous studies. Then, we conducted content analysis to measure five attributes except Article Readability attribute, measured by Flesch readability score. Before conducting main content analysis, the face reliabilities of chosen attributes were measured by three doctoral level researchers with 37 sample articles, and inter-coder reliabilities of the three coders were verified. Then, the main content analysis was conducted for two months from March 2017 with 379 online news articles. All 379 articles were reviewed by the same three coders, and 65 articles that showed inconsistency among coders were excluded before employing conjoint analysis. Finally, we examined the comparative importance of those six systematic attributes (Study 1), and levels within each of the six attributes (Study 2) through conjoint analysis with 314 online news articles. From the results of conjoint analysis, we found that Article Readability, Article-Image Similarity, and Type of Article Title are the most significant factors affecting online news readers' voluntary payment. First, it can be interpreted that if the level of readability of an online news article is in line with the readers' level of readership, the readers will voluntarily pay more. Second, the similarity between the content of the article and the image within it enables the readers to increase the information acceptance and to transmit the message of the article more effectively. Third, readers expect that the article title would reveal the content of the article, and the expectation influences the understanding and satisfaction of the article. Therefore, it is necessary to write an article with an appropriate readability level, and use images and title well matched with the content to make readers voluntarily pay more. We also examined the comparative importance of levels within each attribute in more details. Based on findings of two studies, two major and nine minor propositions are suggested for future empirical research. This study has academic implications in that it is one of the first studies applying both content analysis and conjoint analysis together to examine readers' voluntary payment behavior, rather than their intention to pay. In addition, online news content creators, providers, and managers could find some practical insights from this research in terms of how they should produce news content to make readers voluntarily pay more for their online news content.

A Hybrid Recommender System based on Collaborative Filtering with Selective Use of Overall and Multicriteria Ratings (종합 평점과 다기준 평점을 선택적으로 활용하는 협업필터링 기반 하이브리드 추천 시스템)

  • Ku, Min Jung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.85-109
    • /
    • 2018
  • Recommender system recommends the items expected to be purchased by a customer in the future according to his or her previous purchase behaviors. It has been served as a tool for realizing one-to-one personalization for an e-commerce service company. Traditional recommender systems, especially the recommender systems based on collaborative filtering (CF), which is the most popular recommendation algorithm in both academy and industry, are designed to generate the items list for recommendation by using 'overall rating' - a single criterion. However, it has critical limitations in understanding the customers' preferences in detail. Recently, to mitigate these limitations, some leading e-commerce companies have begun to get feedback from their customers in a form of 'multicritera ratings'. Multicriteria ratings enable the companies to understand their customers' preferences from the multidimensional viewpoints. Moreover, it is easy to handle and analyze the multidimensional ratings because they are quantitative. But, the recommendation using multicritera ratings also has limitation that it may omit detail information on a user's preference because it only considers three-to-five predetermined criteria in most cases. Under this background, this study proposes a novel hybrid recommendation system, which selectively uses the results from 'traditional CF' and 'CF using multicriteria ratings'. Our proposed system is based on the premise that some people have holistic preference scheme, whereas others have composite preference scheme. Thus, our system is designed to use traditional CF using overall rating for the users with holistic preference, and to use CF using multicriteria ratings for the users with composite preference. To validate the usefulness of the proposed system, we applied it to a real-world dataset regarding the recommendation for POI (point-of-interests). Providing personalized POI recommendation is getting more attentions as the popularity of the location-based services such as Yelp and Foursquare increases. The dataset was collected from university students via a Web-based online survey system. Using the survey system, we collected the overall ratings as well as the ratings for each criterion for 48 POIs that are located near K university in Seoul, South Korea. The criteria include 'food or taste', 'price' and 'service or mood'. As a result, we obtain 2,878 valid ratings from 112 users. Among 48 items, 38 items (80%) are used as training dataset, and the remaining 10 items (20%) are used as validation dataset. To examine the effectiveness of the proposed system (i.e. hybrid selective model), we compared its performance to the performances of two comparison models - the traditional CF and the CF with multicriteria ratings. The performances of recommender systems were evaluated by using two metrics - average MAE(mean absolute error) and precision-in-top-N. Precision-in-top-N represents the percentage of truly high overall ratings among those that the model predicted would be the N most relevant items for each user. The experimental system was developed using Microsoft Visual Basic for Applications (VBA). The experimental results showed that our proposed system (avg. MAE = 0.584) outperformed traditional CF (avg. MAE = 0.591) as well as multicriteria CF (avg. AVE = 0.608). We also found that multicriteria CF showed worse performance compared to traditional CF in our data set, which is contradictory to the results in the most previous studies. This result supports the premise of our study that people have two different types of preference schemes - holistic and composite. Besides MAE, the proposed system outperformed all the comparison models in precision-in-top-3, precision-in-top-5, and precision-in-top-7. The results from the paired samples t-test presented that our proposed system outperformed traditional CF with 10% statistical significance level, and multicriteria CF with 1% statistical significance level from the perspective of average MAE. The proposed system sheds light on how to understand and utilize user's preference schemes in recommender systems domain.