• Title/Summary/Keyword: 산소-수소동위원소

Search Result 90, Processing Time 0.038 seconds

Estimation of evapotranspiration of groundwater using isotope tracer(${\delta}^{18}O,\;{\delta}D$) in Yuseong spar district, Daejeon (동위원소(${\delta}^{18}O,\;{\delta}D$)를 이용한 유성지구에서의 증발산량 추정)

  • Jo Seong-Hyeon;Mun Sang-Ho;Yun Uk
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.360-364
    • /
    • 2006
  • 물수지 분석을 통해서 유역의 수문순화 체계를 이해하기 위해서는 무엇보다 필요한 인자가 증발산량이다. 장기간에 걸쳐 연구유역에서 수소와 산소 동위원소를 이용하여 증발산량을 산정하였다. 물 분자를 이루는 이상적인 추적자인 수소와 산소 강우를 풍수기($4{\sim}10$월)와 갈수기(11월$\sim$3월)로 나누어 수소와 산소 동위원소 조성을 강수량 가중 평균치를 구하고 이 값을 지하수의 수소와 산소 동위원소 조성 값과 비교하여 증발산량을 산정한 것이다. 이러한 시도는 증발산량의 산정이 단순한 경험식이나 열전도 가정식이 아닌 실측했다는데 의의가 있다.

  • PDF

Nitrate Contamination of Confined Groundwaters: Application of Nitrogen, Oxygen, and Hydrogen Isotopes (피압대수층 지하수내 질소함유 원인연구: 질소, 산소, 수소동위원소 적용)

  • 추창오;이병대;조병욱;성익환;지세정
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.285-294
    • /
    • 2002
  • The origin of nitrate in confined groundwater was studied using oxygen ($\delta$180), hydrogen ($\delta$D), and nitrogen ($\delta$15N) stable isotopes, along with chemical data of NO3-N. We analyzed groundwaters from more than sixty manufactories producing natural mineral waters around the country During the period of 1998-2001, an average value of nitrate was fair]y low (0.95 mg/$\ell$), however, groundwaters from six sites showed more than 2 mg/$\ell$ of nitrate. The stable isotope data of the groundwaters are -8.3~-11 $\textperthousand$ $\delta$8O, -60~-75 $\textperthousand$ $\delta$D, which lies in an average range of the groundwaters. The nitrogen isotope data with -11.8~-5.1$\textperthousand$ $\delta$15N suggest that manure, organic nitrate, and fertilizers can not be the origin of nitrate in the goundwaters.

토양수채수기를 이용한 제주도 지하수의 함양특성 연구

  • 이광식;이동림;김용제;박원배
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.231-234
    • /
    • 2003
  • Using lysimeter, oxygen and hydrogen isotopic compositions of soil waters were monitored at a test site of Jeju university during November 2002 to June 2003. Oxygen and hydrogen isotopic compositions of soil waters were found to reflect those of precipitation of the study area. Based on d-values, apparent residence times of about 2 and 4 months were found for infiltration of water through the soil layer to depths of 30 cm and 60cm, respectively.

  • PDF

Comparison between Total Least Squares and Ordinary Least Squares for Linear Relationship of Stable Water Isotopes (완전최소자승법과 보통최소자승법을 이용한 물안정동위원소의 선형관계식 비교)

  • Lee, Jeonghoon;Choi, Hye-Bin;Lee, Won Sang;Lee, Seung-Gu
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.517-523
    • /
    • 2017
  • A linear relationship between two stable water isotopes, oxygen and hydrogen, has been used to understand the water cycle as a basic tool. A slope and intercept from the linear relationship indicates what kind of physical processes occur during movement of water. Traditionally, ordinary least squares (OLS) method has been utilized for the linear relationship, but total least squares (TLS) method provides more accurate slope and intercept theoretically because isotopic compositions of both oxygen and hydrogen have uncertainties. In this work, OLS and TLS were compared with isotopic compositions of snow and snowmelt collected from the King Sejong Station, Antarctica and isotopic compositions of water vapor observed by Lee et al. (2013) in the western part of Korea. The slopes from the linear relationship of isotopic compositions of snow and snowmelt at the King Sejong Station were estimated to be 7.00 (OLS) and 7.16(TLS) and the slopes of stable water vapor isotopes were 7.75(OLS) and 7.87(TLS). There was a melting process in the snow near the King Sejong Station and the water vapor was directly transported from the ocean to the study area based on the slope calculations. There is no significant difference in two slopes to interpret the physical processes. However, it is necessary to evaluate the slope differences from the two methods for studies for example, groundwater recharge processes, using the absolute slope values.

Oxygen and Hydrogen Isotope Studies of the Hydrothermal Clay Deposits and Surrounded Rocks in the Haenam Area, Southwestern Part of the Korean Peninsula (한국 서남부, 해남지역의 열수 점토광상과 주변암에 대한 산소 및 수소동위원소 연구)

  • Kim, In Joon;Kusakabe, Minoru
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.11-20
    • /
    • 1993
  • In the present study, three representative hydrothermal clay deposits, named the Seongsan, Ogmaesan and Haenam deposits, were selected for oxygen and hydrogen isotope studies. Oxygen and hydrogen isotopic compositions of quartz, sericite, alunite and kaolin minerals from Seongsan, Ogmaesan, Haenam deposits and surrounded rocks of clay deposits have been measured. The ${\delta}^{18}O$ values of quartz, kaolin, sericite and alunite in the Seongsan mine are +8.4 to +11.1‰, +3.6 to 5.4‰, +4.8 to +5.8‰ and + 3.0 to +6.6‰, respectively. In the Ogmaesan mine, the ${\delta}^{18}O$ values of quartz, kaolin, sericite and alunite are +8.0 to +13.6‰, +2.8 to +6.7‰, +4.8 to +8.4‰ and +0.9 to +2.4‰, respectively. The ${\delta}^{18}O$ values of the Haenam mine range from +7.9 to +10.1‰ for quartz and from +4.5 to +6.5‰ for sericite. The ${\delta}^{18}O$ values of the whole-rocks range from + 3.0 to + 7.8‰ for the granitic rocks. The ${\delta}^{18}O$ values of the whole-rocks range from + 3.2 to + 10.7‰ for the volcanic rocks. The 8D values of kaolin, sericite and alunite in the Seongsan mine are -78 to -86‰, -71 to -90‰ and -43 to -77‰, respectively. In the Ogmaesan mine, the ${\delta}D$ values of kaolin, sericite and alunite are -73 to -80‰, -74 to -88‰ and -57 to -98‰, respectively. The ${\delta}D$ values of the Haenam mine range from -76 to -85‰ for sericite. The ${\delta}D$ values of the whole-rocks range from -77 to -105‰ for the granitic rocks. The ${\delta}D$ values of the wholerocks range from -76 to -100‰ for the volcanic rocks. The main result obtained oxygen and hydrogen isotope data can lead to the following interpretations on the origin of hydrothermal fluids in the clay deposits: Through the oxygen isotopic study, the formation temperature of the clay deposits was estimated from the coexisting minerals such as quartz-kaolin minerals and -sericite. Formation temperature of the acidic alteration zone is 165 to $280^{\circ}C$ in the Seongsan deposits, 175 to $250^{\circ}C$ in the Ogmaesan deposits and 250 to $350^{\circ}C$ in the Haenam deposits. Three clay deposits has been formed by magmatic water mixed with meteoric water. Furthermore, from this isotopic data, it is clarified that kaolin minerals and alunite are hypogene in origin, and has been formed by oxidation of hydrogen sulfide in the steam-heated environment, and that alunite has been produced in the spectacular solfataric alteration observed at the surface of some present-day hydrothermal systems. Oxidation of the $H_2S$ is thought to be generated when the vapor phase generated by boiling of the deep-seated water under the water table.

  • PDF

The Variation of Oxygen and Hydrogen Isotopic Composition in Precipitation and Geothermal Waters from the Yuseong Catchment (유성 소유역의 강수 및 지열수의 산소.수소 안정동위원소 조성 변화)

  • Moon, Sang-Ho;Cho, Sung-Hyeon;Lee, Kwang-Sik;Yun, Uk
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.389-401
    • /
    • 2007
  • The oxygen and hydrogen isotopic composition in precipitation, groundwater and geothermal water were monitored over four-year period from 2001 to 2004 at the Yuseong catchment, Daejeon. By analyzing the long term rainfall pattern, we found out the drought cycle of 6 or 7 year. We fortunately revealed that the oxygen and hydrogen isotopic composition of rain has progressively changed to heavier isotopic ratios from 2001 to 2004. The weighted mean values of ${\delta}^{18}O\;and\;{\delta}D$ of rain are calculated to be $-7.7%o\;and\;-51%o$, respectively. These isotopic values are much heavier than those of groundwater and geothermal water collected at the same period, which indicates that the rain or snow of the study area would not immediately affect the isotopic composition of groundwater or geothermal water. Comparing with the previous data, the groundwater and geothermal water collected at 1990 and 1992 year has the heaviest isotopic composition and afterwards their isotopic composition has been progressively shifted to the direction of lighter composition field.

Equilibrium Fractionation of Clumped Isotopes in H2O Molecule: Insights from Quantum Chemical Calculations (양자화학 계산을 이용한 H2O 분자의 Clumped 동위원소 분배특성 분석)

  • Sehyeong Roh;Sung Keun Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In this study, we explore the nature of clumped isotopes of H2O molecule using quantum chemical calculations. Particularly, we estimated the relative clumping strength between diverse isotopologues, consisting of oxygen (16O, 17O, and 18O) and hydrogen (hydrogen, deuterium, and tritium) isotopes and quantify the effect of temperature on the extent of isotope clumping. The optimized equilibrium bond lengths and the bond angles of the molecules are 0.9631-0.9633 Å and 104.59-104.62°, respectively, and show a negligible variation among the isotopologues. The calculated frequencies of the modes of H2O molecules decrease as isotope mass number increases, and show a more prominent change with varying hydrogen isotopes over those with oxygen isotopes. The equilibrium constants of isotope substitution reactions involving these isotopologues reveal a greater effect of hydrogen mass number than oxygen mass number. The calculated equilibrium constants of clumping reaction for four heavy isotopologues showed a strong correlation; particularly, the relative clumping strength of three isotopologues was 1.86 times (HT18O), 1.16 times (HT17O), and 0.703 times (HD17O) relative to HD18O, respectively. The relative clumping strength decreases with increasing temperature, and therefore, has potential for a novel paleo-temperature proxy. The current calculation results highlight the first theoretical study to establish the nature of clumped isotope fractions in H2O including 17O and tritium. The current results help to account for diverse geochemical processes in earth's surface environments. Future efforts include the calculations of isotope fractionations among various phases of H2O isotopologues with a full consideration of the effect of anharmonicity in molecular vibration.

The Estimation of Water Mass Mixing Ratio by Oxygen and Hydrogen Isotopes in the Southern Yellow Sea (황해 남부해역 해수에서 산소와 수소동위원소를 이용한 혼합비율 추정)

  • Kim, Kee-Hyun;Han, Jeong-Hee
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.357-362
    • /
    • 2000
  • Stable isotope ratios of oxygen and hydrogen were investigated in southern Yellow Sea in August 1997. Salinity showed good positive correlation with ${\delta}^{18}$O and ${\delta}$. The correlation between ${\delta}^{18}$O and ${\delta}$D is good. From the relationship between these parameters, we obtained two lines of conclusion: 1) seawater of study area I in summer is a mixture of Changjiang Water and modified Kuroshio Water; 2) stable isotopes are very useful tracers in studying property and behavior of water masses in the study area. In case when water masses can not be easily distinguished by T-S analysis, the stable isotopes seem to be powerful tools for this purpose.

  • PDF

Groundwater-Stream Water Interaction Induced by Water Curtain Cultivation Activity in Sangdae-ri Area of Cheongju, Korea (청주 상대리지역에서 수막재배가 지하수-하천수 상호작용에 미치는 영향)

  • Moon, Sang-Ho;Kim, Yongcheol;Jeong, Youn-Young;Hwang, Jeong
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.105-120
    • /
    • 2016
  • Most of riverside in Korea, in case of application of water curtain cultivation (WCC) technique, has been inveterately suffering from the gradual drawdown of groundwater level and related shortage of water resources during the WCC peak time. We believe that the water resources issue in these riverside areas can be effectively solved when the interaction between groundwater and nearby surface water is well understood. To investigate the connection between stream and ground water, and the influence of stream water on the nearby aquifer, this study examined the water temperature and oxygen and hydrogen stable isotopic compositions. The study area is well-known strawberry field applying the WCC technique in Sangdae-ri, Gadeok-myon, Cheongju City, and the sampling was done from February 2012 through June 2014 for stream and ground water. Some groundwater wells near stream showed big temporal variations in water temperature, and their oxygen and hydrogen stable isotopes showed similar compositions to those of adjacent stream water. This indicates that the influence of stream water is highly reflected in the stable isotopic composition of groundwater. Four cross-sectional lines from stream to hillside were established in the study area to determine the spatial differences in water quality of wells. At the late stage of WCC in February to March, groundwater of wells in line with short cross-sectional length showed the narrow range of isotopic compositions; however, those in the long cross-sectional line showed a wide compositional range. It was shown that the influence of the stream water at the late WCC stage have reached to the distance of 160 to 165 m from stream line, which is equivalent to the whole length and one-third point in each short and long cross-sectional line, respectively. Therefore, the wide compositional range in the long cross-sectional lines was not only due to the influence of stream water, but apparently resulted from the change of relative impact of each groundwater supplying from two or more aquifers. In view of stable isotopic compositions, there seems to be three different aquifers in this study area, which is competing for dominance of water quality in wells at each period of WCC.