• Title/Summary/Keyword: 산소부화

Search Result 90, Processing Time 0.03 seconds

난류확산화염에서 산소부화가 NO생성에 미치는 영향에 관한 실험적 연구

  • 채전우;전영남;김영권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.4
    • /
    • pp.1022-1032
    • /
    • 1990
  • 본 연구에서는 기체연료 연소시 산소부화연소의 적용에 대한 연구를 시작하는 단계에서 상용 프로판을 산소부화연소 시킴으로써 첨가된 산소에 의한 반응시간의 단 축과 공급 공기량중의 질소량 저감에 희한 연소가스중의 NO농도를 측정하고, 이에 따 른 화염장의 온도 및 연소가스중의 $O_{2}$ 및 N$_{2}$농도를 측정하여 그들의 상관관 계를 가지고 NO의 배출특성을 고찰함으로써 기체연료의 산소부화연소에 따른 효율적인 에너지 이용을 위한 연소장치개발과 오염물질 저감대책에 기초자료를 제공하는데 그 목적이 있다.

막분리법을 이용한 산소부화공기의 제조와 연소장치에의 응용

  • 박준택
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.38-41
    • /
    • 1994
  • 막분리(membrane separation)법은 막 전후의 압력차, 농도차 등을 추진력(driving foroe)으로 하여 분리대상물질에 대한 막의 선택투과성 차이를 이용, 분리를 행하는 것이다. 이 분리법은 기존의 분리공정인 심냉법(cryogenic separation)과는 달리 상변환 공정이 필요없어 에너지가 적게 들고 또한 PSA(pressure swing adsorption)법에서와 같은 cycle 운전이 필요없어 연속적으로 분리가 가능하며 시스템도 간단하다. 최근 기체 막분리의 경우 수소 및 탄산가스의 회수정제, 공기중의 산소와 질소의 분리 등에 실용화되고 있다. 여기서는 공기중의 산소를 분리하여 30-40% 산소부화공기(oxygen enriched air)를 간편하게 제조할 수 있는 산소부화막장치와 연소장치에의 응용기술 및 연구결과에 대해 간략히 소개하고자 한다.

  • PDF

Effects of Oxygen Enrichment on the Structure of Premixed Methane/Fluorinated Compound Flames (메탄-불소계 화합물의 예혼합화염 구조에서 산소 부화의 효과)

  • Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.839-845
    • /
    • 2011
  • We performed numerical simulations of freely propagating premixed flames at atmospheric pressure to investigate the influence of trifluoromethane on $CH_4/O_2/N_2$ flames under oxygen enrichment. Trifluoromethane significantly contributed toward a reduction in flame speed, the magnitude of which was larger in terms of the physical effect than the chemical effect. More trifluoromethane could be added and consumed on oxygen-enriched $CH_4/O_2/N_2$ flames. $CHF_3$ was decomposed primarily via $CF_3{\rightarrow}CF_2{\rightarrow}CF{\rightarrow}CF:O{\rightarrow}CO$ and $CHF_3+M{\rightarrow}CF_2+HF+M$ played an important role in oxygen-enhanced flames. When an inhibitor was added to oxygen-enriched flames, the position of the maximum concentration of active radicals was shifted to a relatively low temperature range, and the net rate of OH became higher than that of H.

NOx emission Characteristics of 25kW Oxygen Enriched LNG Burner (25㎾급 산소부화연소기의 NOx 배출특성)

  • 김경래;김혁주;류정인
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.195-200
    • /
    • 2002
  • 산업체 열 설비 및 동력장치는 대부분이 화석연료를 연소과정을 통한 열에너지로 변환하여 사용하는 구조로 되어있으며, 화석연료의 연소는 필연적으로 온실가스인 $CO_2$, 및 대기 오염 물질인 NOx, SOx, 등을 배출한다. 이에 화석연료의 연소에 의한 환경 및 인체에 미치는 오염물질의 저감과 열에너지의 손실을 줄이기 위해 활발한 연구가 수행되고있으며, 최근에는 연소용 공기 중에 산소를 첨가하여 연소하는 산소부화 연소, 순산소 만으로 연소시키는 방법에 대한 연구가 진행 중에 있다.(중략)

  • PDF

Analysis of respiration gas of a fertile chicken egg during incubation by gas mass spectrometer (기체질량분석기를 이용한 유정란 부화과정의 호흡량 분석)

  • Kim, Hyunjoo;Min, Deullae;Kim, Dalho;Kim, Jin Seog
    • Analytical Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.401-406
    • /
    • 2013
  • Oxygen($O_2$) consumption and carbon dioxide($CO_2$) excretion of a fertile chicken egg during incubation were measured by a gas mass spectrometer. A closed sample chamber was developed to collect gas samples during the 20 days of artificial incubation of both a fertile and an infertile egg. After leaving an egg in the sample chamber for an hour, using a gas-tight syringe, samples of 2 mL of gas were collected from the closed sample chamber and analyzed using a gas mass spectrometer in 2~4 day intervals. The $O_2$ consumption and $CO_2$ excretion of chicken embryos increased rapidly after 10 days from the starting point of incubation. After 20 days, 23 mL of $O_2$ was consumed and 16 mL of $CO_2$ was excreted per hour. Throughout the whole period of incubation, concentration of $O_2$ decreased 4.3 mol% and $CO_2$ increased only 3.1 mole%, i.e., the mole of consumed $O_2$ and the mole of excreted $CO_2$ were not the same. On the other hand, during the same period, concentration of $N_2$ increased about 1.3 mol% and the increased mole fraction of $N_2$ was comparable with the difference (1.2 mol%) between the mole fraction of consumed $O_2$ and excreted $CO_2$. Therefore, we can attribute the increase of $N_2$ mole% to the difference of mole fraction between consumed $O_2$ and excreted $CO_2$. In this study, through the analysis of gas, we could explain the respiration of a fertile chicken egg during incubation.

Combustion Characteristic Study of LNG Flame in an Oxygen Enriched Environment (산소부화 조건에 따른 LNG 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The ultimate objective of this study is to develop oxygen-enriched combustion techniques applicable to the system of practical industrial boiler. To this end the combustion characteristics of lab-scale LNG combustor were investigated as a first step using the method of numerical simulation by analyzing the flame characteristics and pollutant emission behaviour as a function of oxygen enrichment level. Several useful conclusions could be drawn based on this study. First of all, the increase of oxygen enrichment level instead of air caused long and thin flame called laminar flame feature. This was in good agreement with experimental results appeared in open literature and explained by the effect of the decrease of turbulent mixing due to the decrease of absolute amount of oxidizer flow rate by the absence of the nitrogen species. Further, as expected, oxygen enrichment increased the flame temperatures to a significant level together with concentrations of $CO_2$ and $H_2O$ species because of the elimination of the heat sink and dilution effects by the presence of $N_2$ inert gas. However, the increased flame temperature with $O_2$ enriched air showed the high possibility of the generation of thermal $NO_x$ if nitrogen species were present. In order to remedy the problem caused by the oxygen-enriched combustion, the appropriate amount of recirculation $CO_2$ gas was desirable to enhance the turbulent mixing and thereby flame stability and further optimum determination of operational conditions were necessary. For example, the adjustment of burner with swirl angle of $30\sim45^{\circ}$ increased the combustion efficiency of LNG fuel and simultaneously dropped the $NO_x$ formation.

Effects of CO2 on Heat Transfer from Oxygen-Enriched Hydrogen Flame (이산화탄소가 수소 산소부화 화염의 열전달에 미치는 영향)

  • Lee, Chang-Yeop;Choi, Joon-Won;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.937-944
    • /
    • 2004
  • An experimental study has been conducted to evaluate the effects of $CO_2$ on heat transfer from oxygen-enriched hydrogen flame. Experiments were performed on flames stabilized by a co-flow swirl burner, which was mounted on top of the furnace. Five different oxidizer compositions were prepared by replacing $N_2$ with $CO_2$. In a steady state, the total as well as radiative heat flux from the flame to the wall of furnace have been measured using a heat flux meter. Temperature distribution in furnace also has been measured and compared. By increasing $CO_2$ proportion in the oxidizer, the convection played a more significant role rather than radiation. Overall temperature in the furnace was seen to be decreased, while the total heat flux has increased.

Flame Structure of Fuel-rich $CH_4/O_2/N_2$ Premixed Flame with Oxygen Enrichment (과농 조건에서 산소부화된 $CH_4/O_2/N_2$ 예혼합화염의 화염구조)

  • Lee, Ki-Yong;Kwon, Young-Suk
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.1-6
    • /
    • 2003
  • Numerical simulations are conducted at atmospheric pressure in order to understand the effect of the oxygen enrichment level on structure of $CH_4/O_2/N_2$ premixed flames. Under several equivalence ratios the flame speeds are calculated and compared with those obtained from the experiments, the results of which are in good agreement. The effects of the oxygen enrichment are investigated on flames under fuel-rich conditions. As the oxygen enrichment level is increased from 0.21 to 1, the flame speed and the temperature are increased. The emission index of $CO_2$ is decreased in cases of flames for fuel rich mixtures, so the efficiency of combustion may be decreased. The maximum emission index of NO is obtained for 0.6 of the oxygen enrichment level.

  • PDF